代写代考 #JAGS script for normally distributed data with both mean and variance unkn

#JAGS script for normally distributed data with both mean and variance unknown
require(rjags)

#generate data (the same we have used for the Gibbs sampler example)

Copyright By PowCoder代写 加微信 powcoder

set.seed(123)
n=150; y=rnorm(n,2,3)

#Prior information for the mean and variance.
#Note that in the BUGS language the normal dist. is parameterised in terms of the precision=1/variance
mu0=0; sigma02=100; a=0.1; b=0.1

#writing the model, in essence similar syntax to WinBUGS/OpenBUGS
model_string <- "model{ # Likelihood for(i in 1:n){ y[i]~dnorm(mu,inv.var) # Prior for mu mu~dnorm(mu0,inv.var0) inv.var0=1/sigma02 # Prior for the inverse variance inv.var~dgamma(a, b) # Compute the variance sigma2=1/inv.var data=list(y=y,n=n,mu0=mu0,sigma02=sigma02,a=a,b=b) #list of initial values (if not supplied, the function jags.model will generate initial values) inits=list(list(mu=mean(y),inv.var=1/var(y)), list(mu=0,inv.var=1), list(mu=10,inv.var=0.1)) #passing the model to jags *format* model=jags.model(textConnection(model_string),n.chains=3,data=data,inits=inits) #Burnin of 1000 samples update(model,1000,progress.bar="none") # Running the model res=coda.samples(model,variable.names=c("mu","sigma2"),n.iter=10000, progress.bar="none") #summary of the results (posterior mean, std deviation, quantiles,ect) summary(res) #trace and density plots for each of the parameters monitored (mu and sigma2 in this case) #autocorrelation function autocorr.plot(res) #gelman rubin statistic (only works when number of chains >=2)
gelman.plot(res)

#extracting the chains for mu and sigma 2
#mu for chain 1
res[[1]][,1]
#sigma2 for chain 3
res[[3]][,2]

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com