CS计算机代考程序代写 algorithm MULT20015 Lecture 3 2021 FINAL v2

MULT20015 Lecture 3 2021 FINAL v2

MULT20015 Elements of Quantum Computing
Lecture 3

Subject outline

Lecture topics (by week)

1 – Introduction to quantum computing and maths basics
2 – Single qubit representations and logic operations
3 – Two qubit states and logic gates
4 – Multi-qubit states and quantum arithmetic
5 – Basic quantum algorithms
6 – Period finding, cryptography and quantum factoring
7 – Shor’s algorithm, post-quantum crypto, quantum key distribution
8 – Quantum search algorithms
9 – Grover search applications, optimisation problems
10 – Solving optimisation problems on quantum computers
11 – Applications in quantum machine learning
12 – Real quantum computer devices

Assignment schedule:
#1: Hand out in Week 2
#2: Hand out in Week 8

MULT20015 Elements of Quantum Computing
Lecture 3

Week 2

Lecture 3
3.1 The Bloch Sphere representation for qubits
3.2 Quantum operations on qubits
3.3 Qubit gates in matrix form and the Pauli matrices

Lecture 4
4.1 The Pauli gates X, Y and Z and the QUI
4.2 Qubit operations around non-cartesian axes – H and R gates
4.3 Programming sequences over the qubit logic gate library
4.4 Note on the context and use of angles

Practice class 2
Bloch sphere and single qubit logic operations on the QUI

MULT20015 Elements of Quantum Computing
Lecture 3

Lecture 2 recap

! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

A qubit in “ket” notation:

| i = a0 |0i+ a1 |1i =

a0
a1

◆ Prob[“0”] = |a0|2

Prob[“1”] = |a1|2measurement

Outcome probabilityPrepared state |𝜓ñ |𝜓ñ “collapsed” toOutcome

“0”

“1”

? or

| i ! |0i

| i ! |1i

Amplitudes in polar notation

|a0|2 + |a1|2 = 1

|0i =

1
0


|1i =


0
1


| i = a0 |0i+ a1 |1i =


a0
a1


“matrix” notation: | i =


a0
a1

a0, a1 2 Ch | = [ a

0 a


1 ]dual “bra” notation:

| i =

a
b


|�i =


c
d


h |�i ⌘ h ||�i

=

a⇤ b⇤

⇤  c
d

= a⇤c+ b⇤d

inner product “bra-ket”: h |�i ⌘ h ||�i

=

a⇤ b⇤

⇤  c
d

= a⇤c+ b⇤d

MULT20015 Elements of Quantum Computing
Lecture 3

3.1 The Bloch Sphere representation for qubits

MULT20015
Lecture 3

MULT20015 Elements of Quantum Computing
Lecture 3

Recap: amplitudes in the QUI

In the QUI, phase is represented using the phase wheel colour map, and probability by histogram, e.g. two
different states:

Quantum mechanics represents the wave function. Complex numbers represent
the amplitude and phase of this wave. For a qubit we have:

ei✓ = cos ✓ + i sin ✓
AAACJnicbVDLSgNBEJyNrxhfUY9eBoMgCmFXBHMRAl48RjAPSGKYnXSSIbOzy0yvEJb8g5/hF3jVL/Am4s2L/+Ek2YNJLBioruqme8qPpDDoul9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD28mfv0RtBGhusdRBO2A9ZXoCc7QSp38GTwkgrZwAMjG9Jq2eGjSkp5T6xih0rqTL7hFdwq6TLyUFEiKSif/0+qGPA5AIZfMmKbnRthOmEbBJYxzrdhAxPiQ9aFpqWIBmHYy/dOYnlilS3uhtk8hnap/JxIWGDMKfNsZMByYRW8i/uc1Y+yV2olQUYyg+GxRL5YUQzoJiHaFBo5yZAnjWthbKR8wzTjaGOe2+JoNAcc2F28xhWVSuyh6btG7uyyUS2lCWXJEjskp8cgVKZNbUiFVwskTeSGv5M15dt6dD+dz1ppx0plDMgfn+xd4BaUvAAACJnicbVDLSgNBEJyNrxhfUY9eBoMgCmFXBHMRAl48RjAPSGKYnXSSIbOzy0yvEJb8g5/hF3jVL/Am4s2L/+Ek2YNJLBioruqme8qPpDDoul9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD28mfv0RtBGhusdRBO2A9ZXoCc7QSp38GTwkgrZwAMjG9Jq2eGjSkp5T6xih0rqTL7hFdwq6TLyUFEiKSif/0+qGPA5AIZfMmKbnRthOmEbBJYxzrdhAxPiQ9aFpqWIBmHYy/dOYnlilS3uhtk8hnap/JxIWGDMKfNsZMByYRW8i/uc1Y+yV2olQUYyg+GxRL5YUQzoJiHaFBo5yZAnjWthbKR8wzTjaGOe2+JoNAcc2F28xhWVSuyh6btG7uyyUS2lCWXJEjskp8cgVKZNbUiFVwskTeSGv5M15dt6dD+dz1ppx0plDMgfn+xd4BaUvAAACJnicbVDLSgNBEJyNrxhfUY9eBoMgCmFXBHMRAl48RjAPSGKYnXSSIbOzy0yvEJb8g5/hF3jVL/Am4s2L/+Ek2YNJLBioruqme8qPpDDoul9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD28mfv0RtBGhusdRBO2A9ZXoCc7QSp38GTwkgrZwAMjG9Jq2eGjSkp5T6xih0rqTL7hFdwq6TLyUFEiKSif/0+qGPA5AIZfMmKbnRthOmEbBJYxzrdhAxPiQ9aFpqWIBmHYy/dOYnlilS3uhtk8hnap/JxIWGDMKfNsZMByYRW8i/uc1Y+yV2olQUYyg+GxRL5YUQzoJiHaFBo5yZAnjWthbKR8wzTjaGOe2+JoNAcc2F28xhWVSuyh6btG7uyyUS2lCWXJEjskp8cgVKZNbUiFVwskTeSGv5M15dt6dD+dz1ppx0plDMgfn+xd4BaUvAAACJnicbVDLSgNBEJyNrxhfUY9eBoMgCmFXBHMRAl48RjAPSGKYnXSSIbOzy0yvEJb8g5/hF3jVL/Am4s2L/+Ek2YNJLBioruqme8qPpDDoul9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD28mfv0RtBGhusdRBO2A9ZXoCc7QSp38GTwkgrZwAMjG9Jq2eGjSkp5T6xih0rqTL7hFdwq6TLyUFEiKSif/0+qGPA5AIZfMmKbnRthOmEbBJYxzrdhAxPiQ9aFpqWIBmHYy/dOYnlilS3uhtk8hnap/JxIWGDMKfNsZMByYRW8i/uc1Y+yV2olQUYyg+GxRL5YUQzoJiHaFBo5yZAnjWthbKR8wzTjaGOe2+JoNAcc2F28xhWVSuyh6btG7uyyUS2lCWXJEjskp8cgVKZNbUiFVwskTeSGv5M15dt6dD+dz1ppx0plDMgfn+xd4BaUv

Re

Im

Probability

Recall:

| i = a0 |0i+ a1 |1i =

a0
a1


! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

a = Re[a] + i Im[a] = |a|ei✓ !
|a| =

p
Re[a]2 + Im[a]2

✓ = tan�1 (Im[a]/Re[a])

! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

|a0|2

|a1|2
! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i
|a0|2

|a1|2

✓0 = 0 ✓0 = ⇡/2✓1 = ⇡/4 ✓1 = 3⇡/4

MULT20015 Elements of Quantum Computing
Lecture 3

Re-writing the state…

Recall, arbitrary qubit state:

We can rearrange as:

| i = a0 |0i+ a1 |1i =

a0
a1


! | i = |a0|ei✓0 |0i+ |a1|ei✓1 |1i

| i = ei✓0

|a0| |0i+ |a1|ei(✓1�✓0) |1i


= ei✓global


cos

✓B
2

|0i+ sin
✓B
2
ei�B |1i

|a0|2 + |a1|2 = 1

|a0| ⌘ cos
✓B
2

|a1| ⌘ sin
✓B
2

Probability normalisation:

�B ⌘ ✓1 � ✓0Where:
|a0|2 + |a1|2 = 1

NB: cos “!
#

#
+ sin “!

#

#
= 1

For single qubit we ignore global phase 𝜃$%&'(% → state expressed via “Bloch” angles 𝜃) , 𝜙)

Suggests a representation on a sphere – the Bloch Sphere

i.e.

MULT20015 Elements of Quantum Computing
Lecture 3

Re-writing the state…

So, a qubit state (global phase set to zero) can be represented by two angles:

The real variables 𝜃B and 𝜙B dictate the position of this state on the Bloch sphere.

|a0|

|a1|

𝜃B/2

Definition of 𝜃B :

| i = a0 |0i+ a1 |1i =

a0
a1

| i = a0 |0i+ a1 |a1i

! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i

| i = a0 |0i+ a1 |a1i

! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i

p
|a0|2 + |a1|2 = 1

|a0| ⌘ cos
✓B
2

|a1| ⌘ sin
✓B
2

�B ⌘ ✓1 � ✓0

And the azimuthal angle 𝜙) runs from 0 to 2𝜋

NB. Bloch Sphere angles distinct from amplitude polar angles…

MULT20015 Elements of Quantum Computing
Lecture 3

Qubit states on the Bloch sphere

|0i

|1i

|0i � i|1i
p
2

|0i+ |1i
p
2

|0i � |1i
p
2

|0i+ i|1i
p
2

| i

𝜃B

𝜙B

𝜃B =𝜋/2, 𝜙B=0

𝜃B=𝜋/2, 𝜙B=𝜋/2

𝜃B=𝜋/2, 𝜙B=𝜋

𝜃B =𝜋/2, 𝜙B=3𝜋/2

𝜃B=0, 𝜙B=0

𝜃B =𝜋, 𝜙B=0

| i = a0 |0i+ a1 |a1i ! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i| i = a0 |0i+ a1 |1i =


a0
a1

|a0| ⌘ cos
✓B
2

|a1| ⌘ sin
✓B
2

�B ⌘ ✓1 � ✓0

MULT20015 Elements of Quantum Computing
Lecture 3

Qubit states on the Bloch sphere – explicit construction

| ⟩𝜓 = cos(0/2)| ⟩0 + sin 0/2 𝑒*(,)| ⟩1 = | ⟩0
1 0 1

| ⟩𝜓 = cos(𝜋/4)| ⟩0 + sin 𝜋/4 𝑒*(𝜋)| ⟩1

= .
#
| ⟩0 − .

#
| ⟩1 = |

⟩, 1| ⟩.
#

1/ 2 1/ 2 -1

| ⟩𝜓 = cos(𝜋/4)| ⟩0 + sin 𝜋/4 𝑒*(𝜋/2)| ⟩1

= .
#
| ⟩0 + *

#
| ⟩1 = |

⟩, 2*| ⟩.
#

1/ 2 1/ 2 +i

| ⟩𝜓 = cos(𝜋/2)| ⟩0 + sin 𝜋/2 𝑒*(,)| ⟩1 = | ⟩1
0 1 1

| ⟩𝜓 = cos(𝜋/4)| ⟩0 + sin 𝜋/4 𝑒*(,)| ⟩1

= .
#
| ⟩0 + .

#
| ⟩1 = |

⟩, 2| ⟩.
#

1/ 2 11/ 2| ⟩𝜓 = cos(𝜋/4)| ⟩0 + sin 𝜋/4 𝑒*(36/2)| ⟩1

= .
#
| ⟩0 − *

#
| ⟩1 = |

⟩, 1*| ⟩.
#

1/ 2 1/ 2 -i

| i = a0 |0i+ a1 |a1i ! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i| i = a0 |0i+ a1 |1i =


a0
a1

|0i

|1i

|0i � i|1i
p
2

|0i+ |1i
p
2

|0i � |1i
p
2

|0i+ i|1i
p
2

| i

!B

“B

!B =#/2, “B=0

!B=#/2, “B=#/2

!B=#/2, “B=#

!B =#/2, “B=3#/2

!B=0, “B=0

!B =#, “B=0

MULT20015 Elements of Quantum Computing
Lecture 3

hXi

hY i

|0i

|1i

|0i � i|1i
p
2

|0i+ |1i
p
2

|0i+ i|1i
p
2

|0i � |1i
p
2

“Z” axis

“X” axis

“Y” axis

Qubit states on the Bloch sphere – example (Prac Class 1)

Recall, in the prac class we produced the state:

| i = a0 |0i+ a1 |a1i ! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i| i = a0 |0i+ a1 |1i =


a0
a1

|0i !
p
3

2
|0i+

�i
2

|1i = |0i+ |1i| i = a0 |0i+ a1 |1i =

a0
a1

We want to express this on the Bloch Sphere…

cos
“”
#
= 3

#
⟶ 𝜃) = 2cos1.

3
#
= 604

a0 =
3
#

i.e. |a0| = 0.866, 𝜃, = 0
a1 =

1*
#

i.e. |a1| = 0.500, 𝜃. = – 𝜋/2

sin
“”
#
= sin 30 = .

#
⟶ 𝑒*5″ = −𝑖

⟶ 𝜙)= – 904

𝜙! = 𝜃”- 𝜃# = −
$
%
= −90&

𝜃B

𝜙B

|0i !
p
3

2
|0i+

�i
2

|1i = |0i+ |1i| i = a0 |0i+ a1 |1i =

a0
a1

MULT20015 Elements of Quantum Computing
Lecture 3

Qubit states on the Bloch sphere – example (Prac Class 1)

Recall, in the prac class we produced the state:

| i = a0 |0i+ a1 |a1i ! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i| i = a0 |0i+ a1 |1i =


a0
a1

|0i !
p
3

2
|0i+

�i
2

|1i = |0i+ |1i| i = a0 |0i+ a1 |1i =

a0
a1

We want to express this on the Bloch Sphere…

a0 =
3
#

i.e. |a0| = 0.866, 𝜃, = 0
a1 =

1*
#

i.e. |a1| = 0.500, 𝜃. = – 𝜋/2

𝜙! = 𝜃”- 𝜃# = −
$
%
= −90&

hXi

hY i

|0i

|1i

|0i � i|1i
p
2

|0i+ |1i
p
2

|0i+ i|1i
p
2

|0i � |1i
p
2

“Z” axis

“X” axis

“Y” axis

𝜃B

𝜙B

|0i !
p
3

2
|0i+

�i
2

|1i = |0i+ |1i| i = a0 |0i+ a1 |1i =

a0
a1

QUI Bloch spheres:

| ⟩𝜓 =| ⟩0 | ⟩𝜓6 =
3
2
| ⟩0 +

−𝑖
2
| ⟩1

MULT20015 Elements of Quantum Computing
Lecture 3

The Bloch Sphere – Cartesian Axes

hXi

hY i

|0i

|1i

|0i � i|1i
p
2

|0i+ |1i
p
2

| i

|0i+ i|1i
p
2

|0i � |1i
p
2

| i = a0 |0i+ a1 |a1i ! cos
✓B
2

|0i+ sin
✓B
2
ei�B |1i| i = a0 |0i+ a1 |1i =


a0
a1

x

z

y

C/f cartesian axes labelling:

“Z” axis

“X” axis

“Y” axis

These X, Y and Z axes are not our usual “real space” cartesian axes…these are a
representation of the space in which the single-qubit states live…

…but they are used a lot in describing quantum logic operations!

Bloch sphere representation:

MULT20015 Elements of Quantum Computing
Lecture 3

3.2 Quantum operations on qubits

MULT20015
Lecture 3

MULT20015 Elements of Quantum Computing
Lecture 3

Quantum operations in general

| 0i = U | i
AAACFXicbVDLSsNAFJ34rPUVdSVuBovoqiQi2I1QcOOygmkLTSiT6U07dPJgZiKUEPwMv8CtfoE7cevaD/A/nLRZ2NYDA+eecy/3zvETzqSyrG9jZXVtfWOzslXd3tnd2zcPDtsyTgUFh8Y8Fl2fSOAsAkcxxaGbCCChz6Hjj28Lv/MIQrI4elCTBLyQDCMWMEqUlvrmsTsGlbmJZOc5vsEOLmpc1H2zZtWtKfAysUtSQyVaffPHHcQ0DSFSlBMpe7aVKC8jQjHKIa+6qYSE0DEZQk/TiIQgvWz6hRyfaWWAg1joFyk8Vf9OZCSUchL6ujMkaiQXvUL8z+ulKmh4GYuSVEFEZ4uClGMV4yIPPGACqOITTQgVTN+K6YgIQpVObW6LL4jOJte52IspLJP2Zd226vb9Va3ZKBOqoBN0ii6Qja5RE92hFnIQRU/oBb2iN+PZeDc+jM9Z64pRzhyhORhfv/xhnrQ=AAACFXicbVDLSsNAFJ34rPUVdSVuBovoqiQi2I1QcOOygmkLTSiT6U07dPJgZiKUEPwMv8CtfoE7cevaD/A/nLRZ2NYDA+eecy/3zvETzqSyrG9jZXVtfWOzslXd3tnd2zcPDtsyTgUFh8Y8Fl2fSOAsAkcxxaGbCCChz6Hjj28Lv/MIQrI4elCTBLyQDCMWMEqUlvrmsTsGlbmJZOc5vsEOLmpc1H2zZtWtKfAysUtSQyVaffPHHcQ0DSFSlBMpe7aVKC8jQjHKIa+6qYSE0DEZQk/TiIQgvWz6hRyfaWWAg1joFyk8Vf9OZCSUchL6ujMkaiQXvUL8z+ulKmh4GYuSVEFEZ4uClGMV4yIPPGACqOITTQgVTN+K6YgIQpVObW6LL4jOJte52IspLJP2Zd226vb9Va3ZKBOqoBN0ii6Qja5RE92hFnIQRU/oBb2iN+PZeDc+jM9Z64pRzhyhORhfv/xhnrQ=AAACFXicbVDLSsNAFJ34rPUVdSVuBovoqiQi2I1QcOOygmkLTSiT6U07dPJgZiKUEPwMv8CtfoE7cevaD/A/nLRZ2NYDA+eecy/3zvETzqSyrG9jZXVtfWOzslXd3tnd2zcPDtsyTgUFh8Y8Fl2fSOAsAkcxxaGbCCChz6Hjj28Lv/MIQrI4elCTBLyQDCMWMEqUlvrmsTsGlbmJZOc5vsEOLmpc1H2zZtWtKfAysUtSQyVaffPHHcQ0DSFSlBMpe7aVKC8jQjHKIa+6qYSE0DEZQk/TiIQgvWz6hRyfaWWAg1joFyk8Vf9OZCSUchL6ujMkaiQXvUL8z+ulKmh4GYuSVEFEZ4uClGMV4yIPPGACqOITTQgVTN+K6YgIQpVObW6LL4jOJte52IspLJP2Zd226vb9Va3ZKBOqoBN0ii6Qja5RE92hFnIQRU/oBb2iN+PZeDc+jM9Z64pRzhyhORhfv/xhnrQ=AAACFXicbVDLSsNAFJ34rPUVdSVuBovoqiQi2I1QcOOygmkLTSiT6U07dPJgZiKUEPwMv8CtfoE7cevaD/A/nLRZ2NYDA+eecy/3zvETzqSyrG9jZXVtfWOzslXd3tnd2zcPDtsyTgUFh8Y8Fl2fSOAsAkcxxaGbCCChz6Hjj28Lv/MIQrI4elCTBLyQDCMWMEqUlvrmsTsGlbmJZOc5vsEOLmpc1H2zZtWtKfAysUtSQyVaffPHHcQ0DSFSlBMpe7aVKC8jQjHKIa+6qYSE0DEZQk/TiIQgvWz6hRyfaWWAg1joFyk8Vf9OZCSUchL6ujMkaiQXvUL8z+ulKmh4GYuSVEFEZ4uClGMV4yIPPGACqOITTQgVTN+K6YgIQpVObW6LL4jOJte52IspLJP2Zd226vb9Va3ZKBOqoBN0ii6Qja5RE92hFnIQRU/oBb2iN+PZeDc+jM9Z64pRzhyhORhfv/xhnrQ=

A quantum operation “U ” takes a state | ⟩𝜓 and changes it to a new state | ⟩𝜓6

| ⟩𝜓 | ⟩𝜓| ⟩0 + 𝑎?| ⟩1

Circuit symbol:

x

z

y

On the computational states the X-gate operation
is a “bit flip”:

X| ⟩0 = | ⟩1

X| ⟩1 = | ⟩0

a0 |0i+ a1 |1i ! a1 |0i+ a0 |1i

X (a0 |0i+ a1 |1i) =

0 1
1 0

� 
a0
a1


=


a1
a0

i.e. X (a0 |0i+ a1 |1i) = a1 |0i+ a0 |1i

Quantum mechanics is inherently linear, so the
X-gate acting on a linear superposition is:

X

Or we can write in “ket” notation:

hXi

hY i

|0i

|1i

“Z” axis

“X” axis

“Y” axis

|”!⟩

X-gate: rotate around X-axis by !

|”⟩

MULT20015 Elements of Quantum Computing
Lecture 3

3.3 Qubit gates in matrix form and the Pauli matrices

MULT20015
Lecture 3

MULT20015 Elements of Quantum Computing
Lecture 3

The X gate in matrix form

|0i =

1
0


|1i =


0
1


| i = a0 |0i+ a1 |1i =


a0
a1


Recall “matrix”
notation:

| i =

a0
a1

a0, a1 2 C

𝑎! ⟩0 + 𝑎” ⟩1 =
𝑎!
𝑎”

⟶ 𝑎” ⟩0 + 𝑎! ⟩1 =
𝑎”
𝑎!

a0 |0i+ a1 |1i ! a1 |0i+ a0 |1i
X

Action of X-gate in “ket” form:

What is the X-gate in “matrix” form?

𝑎,
𝑎.


𝑎.
𝑎,

X

𝑎,
6

𝑎.
6

𝑎,
𝑎.

| ⟩𝜓! = 𝑈 | ⟩𝜓
= 2 x 2matrix

Operations in matrix representation:

Action of X-gate in matrix form:

i.e.

In matrix notation, in general:

X
𝑎!
𝑎”

= 0 1
1 0

𝑎!
𝑎”

=
𝑎”
𝑎!𝑋 =

0 1
1 0

MULT20015 Elements of Quantum Computing
Lecture 3

The X gate in matrix form – the Pauli matrices

| ⟩𝜓! = 𝑋 | ⟩𝜓
𝑎,
6

𝑎.
6

𝑎,
𝑎.=

0 1
1 0

𝑋 = 0 1
1 0

This is the so-called
Pauli X matrix…one of
three Pauli matrices
representing X, Y and Z
operations…

Y= 0 −𝑖
𝑖 0

Z= 1 0
0 −1

𝑋 = 0 1
1 0

All cartesian axes – the Pauli matrices for X, Y and Z:

hXi

hY i

|0i

|1i

“Z” axis

“X” axis

“Y” axis

|”!⟩

X-gate: rotate around X-axis by !

|”⟩

hXi

hY i

|0i

|1i

“Z” axis

“X” axis

“Y” axis

Z-gate: rotate around Z-axis by !

|”!⟩
|”⟩

hXi

hY i

|0i

|1i

“Z” axis

“X” axis

“Y” axis

Y-gate: rotate around Y-axis by !

|”!⟩

|”⟩

MULT20015 Elements of Quantum Computing
Lecture 3

Week 2

Lecture 3
3.1 The Bloch Sphere representation for qubits
3.2 Quantum operations on qubits
3.3 Qubit gates in matrix form and the Pauli matrices

Lecture 4
4.1 The Pauli gates X, Y and Z and the QUI
4.2 Qubit operations around non-cartesian axes – H and R gates
4.3 Programming sequences over the qubit logic gate library
4.4 Note on the context and use of angles

Practice class 2
Bloch sphere and single qubit logic operations on the QUI

MULT20015 Elements of Quantum Computing
Lecture 3

Subject outline

Lecture topics (by week)

1 – Introduction to quantum computing and maths basics
2 – Single qubit representations and logic operations
3 – Two qubit states and logic gates
4 – Multi-qubit states and quantum arithmetic
5 – Basic quantum algorithms
6 – Period finding, cryptography and quantum factoring
7 – Shor’s algorithm, post-quantum crypto, quantum key distribution
8 – Quantum search algorithms
9 – Grover search applications, optimisation problems
10 – Solving optimisation problems on quantum computers
11 – Applications in quantum machine learning
12 – Real quantum computer devices

Assignment schedule:
#1: Hand out in Week 2
#2: Hand out in Week 8