CS计算机代考程序代写 AI CSU22022, 6th Lecture, Dr. M. Manzke, Page: 1

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 1

Arithmetic Circuit

The arithmetic circuit may
implemented with the following
components:

Parallel Adder
Build from a cascade of full-adder circuits

The data input to the parallel adder is
manipulated in order to achieve a
number of arithmetic operations

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 2

N-bit Arithmetic/Logic Unit(ALU)

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 3

G = A + Y + Cin

Select Input

S1 S0 Y Cin=0 Cin=1

0 0 all 0’s G=A G=A+1
0 1 B G=A+B G=A+B+1
1 0 B G=A+B G=A+B+1
1 1 all 1’s G=A-1 G=A

The arithmetic micro-ops can be implemented using the
carry-in Cin and two select inputs S1 & S0, which condition
the B input to deliver Y to the full-adder computing: G =
A + Y + Cin.

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 4

Arithmetic Circuit

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 5

Y(S,B)

Yi = S0 Bi + S1 Bi
Thus a 2:1 MUX controlled by Bi can efficiently
generates logic function Y(S,B) is derived as:

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 6

One Bit Slice

One bit slice of the Arithmetic unit on the next slide.

MUXi

FAi

Bi

Ai

S1 S2

Gi

Ci

Ci+1

0 1

S

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 7

4-Bit Arithmetic Circuit

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 8

Logic Circuit

Select Output

S1 S0

0 0 G = A  B AND
0 1 G = A  B OR
1 0 G = A  B XOR
1 1 G = A NOT

The logic function are similarly selected by input S1
and S0 :

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 9

Logic Circuit
Implemented with a 4:1 MUX

One bit slice of the logic unit.

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 10

ALU (Arithmetic/Logic)

We next use an additional 2:1 MUX
controlled by S2 to select either the
arithmetic output bit or the logic output
bit as shown on the next slide.

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 11

One bit slice ALU

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 12

N-bit ALU

To construct an n-bit ALU we concatenate n-bit
slices together:

G0
B0
A0
B1
A1

Bn-1
An-1

G1

Gn-1

S0 S1 S2

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 13

Physical Implementation

Physical schematic of an n-bit ALU
assembled from a bit slices as shown on
the previous slide.

1. Note the control signals, because they
apply to the whole word, tend to cross the
datapath.

2. This geometry results in very efficient VLSI
chip implementation.

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 14

Adder

This adder this gives us a fast combinational ALU with the
following functionality:

Select Output
S2 S1 S0 Cin
0 0 0 0 G = A TRANSFER
0 0 0 1 G = A + 1 INCREMENT
0 0 1 0 G = A + B ADD
0 0 1 1 G = A + B +1 ADD WITH C
0 1 0 0 G = A + B A plus 1’s C.B
0 1 0 1 G = A + B +1 SUBTRACT
0 1 1 0 G = A – 1 DECREMENT
0 1 1 1 G = A TRANSFER
1 0 0 X G = A  B AND
1 0 1 X G = A  B OR
1 1 0 X G = A  B XOR
1 1 1 X G = A NOT

CSU22022, 6th Lecture, Dr. M. Manzke, Page: 15

4-Bit SR/SL Shifter Unit

For speed of execution the shifter unit is always implemented as
a combinational circuit based on a MUX: