程序代写

using LinearAlgebra, ColorBitstring, Plots

Copyright By PowCoder代写 加微信 powcoder

1. IntervalArithmetic.jl¶

using IntervalArithmetic

x = Interval(1)/5

println(y.lo)
println(y.hi)

1.2000000000000002

x = exp(Interval(1))
println(x.lo)
print(x.hi)

2.718281828459045
2.7182818284590455

# compute e to 1000 digits

typeof(Interval(1.0))

Interval{Float64}

typeof(Interval(big(1.0)))

Interval{BigFloat}

setprecision(3_000) do # number of signficand bits
x = exp(Interval(big(1.0)))
println(x.lo)
print(x.hi)

2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167652
2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167685

setprecision(3_000) do # number of signficand bits
x = 2asin(Interval(big(1.0)))
println(x.lo)
print(x.hi)

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035955
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035988

x = Interval(1)
T = typeof(x)
o = ones(T,n-1)
Tridiagonal(o, Vector{T}((1:n)/x), o) \ [1; zeros(n-1)]

100-element Vector{Interval{Float64}}:
[2.57592, 2.57593]
[-1.57593, -1.57592]
[0.57592, 0.575921]
[-0.151841, -0.15184]
[0.0314422, 0.0314423]
[-0.00537061, -0.0053706]
[0.000781381, 0.000781382]
[-9.90642e-05, -9.90641e-05]
[1.11319e-05, 1.1132e-05]
[-1.12349e-06, -1.12348e-06]
[1.0292e-07, 1.02921e-07]
[-8.63232e-09, -8.63231e-09]
[6.6771e-10, 6.67711e-10]
[2.67574e-136, 2.67575e-136]
[-2.97342e-138, -2.97341e-138]
[3.26787e-140, 3.26788e-140]
[-3.55246e-142, -3.55245e-142]
[3.82028e-144, 3.82029e-144]
[-4.06459e-146, -4.06458e-146]
[4.27897e-148, 4.27898e-148]
[-4.45775e-150, -4.45774e-150]
[4.5961e-152, 4.59611e-152]
[-4.69039e-154, -4.69038e-154]
[4.73823e-156, 4.73824e-156]
[-4.73824e-158, -4.73823e-158]

A = randn(n,n);

(A) \ [1; zeros(n-1)]

50-element Vector{Float64}:
0.09114260953648173
-0.05967647453042956
-0.2305742875137488
-0.06680422271423832
-0.44438907574373826
-0.12045846546967151
-0.32740694132488335
0.3114744973080232
0.061515902032504316
0.02671059423302417
0.09399621812278754
-0.01204338118887417
-0.38399733608801717
-0.325742489758591
-0.1703947805229125
0.1121580069286252
0.10261241976575919
-0.014219308639868141
0.413494945925463
-0.1924888670105587
0.13380509311003336
0.2860933387785968
0.17177721770176974
-0.027624792946914695
0.0383323630761978

Interval.(A) \ [1; zeros(n-1)]

50-element Vector{Interval{Float64}}:
[-109196, 109196]
[-124243, 124243]
[-56342.2, 56341.8]
[-68716.6, 68716.4]
[-55662.3, 55661.4]
[-44107.4, 44107.2]
[-21279.8, 21279.1]
[-9927.66, 9928.29]
[-12473, 12473.2]
[-4463.38, 4463.43]
[-5135.8, 5135.99]
[-5571.84, 5571.82]
[-2332.4, 2331.63]
[-0.569501, -0.081711]
[-0.371294, 0.0307084]
[-0.0142663, 0.238499]
[-0.0686573, 0.27382]
[-0.071808, 0.0430442]
[0.354396, 0.47256]
[-0.216608, -0.167789]
[0.109675, 0.157728]
[0.249495, 0.322001]
[0.149252, 0.19307]
[-0.033725, -0.0220872]
[0.0308908, 0.046526]

x = Interval(-1,1)
x – x # should be [0,0] if we knew the co-dependencies

pitfalls of interval arithmetic¶

2. Dual numbers¶
Q: Can we combine complex numbers with Dual Numbers? YES!

# Dual(a,b) represents a + b*ϵ
struct Dual{T}

# Dual(a) represents a + 0*ϵ
Dual(a::Real) = Dual(a, zero(a)) # for real numbers we use a + 0ϵ

# Allow for a + b*ϵ syntax
const ϵ = Dual(0, 1)

import Base: +, *, -, /, ^, zero, exp, cos, one, sin

one(d::Dual) = Dual(one(d.a), zero(d.b))

# support polynomials like 1 + x, x – 1, 2x or x*2 by reducing to Dual
+(x::Real, y::Dual) = Dual(x) + y
+(x::Dual, y::Real) = x + Dual(y)
-(x::Real, y::Dual) = Dual(x) – y
-(x::Dual, y::Real) = x – Dual(y)
*(x::Real, y::Dual) = Dual(x) * y
*(x::Dual, y::Real) = x * Dual(y)

# support x/2 (but not yet division of duals)
/(x::Dual, k::Real) = Dual(x.a/k, x.b/k)

# a simple recursive function to support x^2, x^3, etc.
function ^(x::Dual, k::Integer)
error(“Not implemented”)
elseif k == 1
x^(k-1) * x

# Algebraic operationds for duals
-(x::Dual) = Dual(-x.a, -x.b)
+(x::Dual, y::Dual) = Dual(x.a + y.a, x.b + y.b)
-(x::Dual, y::Dual) = Dual(x.a – y.a, x.b – y.b)
*(x::Dual, y::Dual) = Dual(x.a*y.a, x.a*y.b + x.b*y.a)

exp(x::Dual) = Dual(exp(x.a), exp(x.a) * x.b)
cos(x::Dual) = Dual(cos(x.a), -sin(x.a) * x.b)
sin(x::Dual) = Dual(sin(x.a), cos(x.a) * x.b)

sin (generic function with 26 methods)

Can we differentiate
e^{cos(x+iy)}
with respect to x (same as differentiating $e^{cos(z)}$ with respect to $z$)
at the point $x + i*y = 1 +2i$

z = Dual(1.0+2.0im, 1.0 + 0.0im)
f = z -> exp(cos(z))

Dual{ComplexF64}(-7.604156595433161 – 0.6838887029491975im, 22.732926546437596 + 17.066153344771642im)

-sin(z.a)exp(cos(z.a))

22.732926546437596 + 17.066153344771642im

ForwardDiff.jl¶
A package for forward-mode automatic differentiation using Dual number

using ForwardDiff
import ForwardDiff: derivative, gradient

f = x -> exp(cos(x))
fp = x -> derivative(f, x)

x = range(0,1; length=1000)
plot(x, f.(x))
plot!(x, fp.(x))

f = function(𝐱)
cos(y*exp(x))

#53 (generic function with 1 method)

f([0.2,0.3])

0.9336156550988468

gradient(f, [0.2,0.3])

2-element Vector{Float64}:
-0.13127984788677705
-0.43759949295592354

Dual numbers and higher order derivatives¶

f = x -> exp(cos(x))
fp = x -> derivative(f, x)
fpp = x -> derivative(fp, x)

x = range(0,1; length=1000)
plot(x, f.(x); label=”f”)
plot!(x, fp.(x); label=”f'”)
plot!(x, fpp.(x); label=”f””)

f = x -> exp(cos(x))
fp = x -> f(Dual(x, one(x))).b

#83 (generic function with 1 method)

fp(Dual(0.0, 1.0))

Dual{Float64}(-0.0, -2.718281828459045)

# Why does this compute the second derivative?

f(Dual(Dual(0.0,1.0), Dual(1.0,0.0)))

# Encourage you to try to figure out why this works with pen-and-paper

Dual{Dual{Float64}}(Dual{Float64}(2.718281828459045, -0.0), Dual{Float64}(-0.0, -2.718281828459045))

Correct solution to Q4.3¶

x = 2.0^53
x + 1 == x

y = nextfloat(x)
y + 1 == y

printlnbits(x)
printbits(x + 1)

0100001101000000000000000000000000000000000000000000000000000000
0100001101000000000000000000000000000000000000000000000000000000

printlnbits(y)
printbits(y + 1)

0100001101000000000000000000000000000000000000000000000000000001
0100001101000000000000000000000000000000000000000000000000000010

x = 2.0^54
x + 1 == x
y = nextfloat(y)
y + 1 == y
z = prevfloat(x)

printbits(x)

0100001101010000000000000000000000000000000000000000000000000000

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com