代写代考 EBU7240_CHANGJAE_OH_19XXXXXXX.pdf

PowerPoint 프레젠테이션

Changjae Oh

Copyright By PowCoder代写 加微信 powcoder

Computer Vision
– Course Overview –

Semester 1, 22/23

Course Overview

Unit 1: Early vision / Low-level vision
• Introduction / Camera / Restoration / Feature detection

Unit 2: Mid-level vision
• Fitting / Grouping / Calibration / Epipolar /Stereo matching

Unit 4: Deep learning for computer vision
• Introduction / Loss / Backpropagation / CNN / Deep learning with practice

Unit 3: Mid-/High-level vision
• Tracking / Recognition / Detection

Course Overview

Unit 1: Early vision / Low-level vision
• Introduction / Camera / Restoration / Feature detection

• Lab1: Setting up – image/video representation in Python
• CT1: Early vision / Low-level vision

Unit 2: Mid-level vision
• Fitting / Grouping / Calibration / Epipolar /Stereo matching

• Lab2: Restoration and features
• CT2: Mid-level vision

Unit 4: Deep learning for computer vision
• Introduction / Loss / Backpropagation / CNN / Deep learning with practice

• Coursework report submission (Deadline: 23:59, 21th December 2021, UK time)
• CT4: Deep learning for computer vision

Unit 3: Mid-/High-level vision
• Tracking / Recognition / Detection

• Lab3: Fitting and grouping
• Lab4: Tracking and detection + In-lab assessment
• CT3: Mid-/High-level vision

Course Details – Module Delivery

• Blended Teaching – How?

̶ Lectures
= 50% live lectures + 50% recorded lectures

Telecom_M_G1

1 19:20-20:05

2 20:10-20:55

3 16:35-17:20

4 17:25-18:10

BUPT Week 5 6 7 8 9 10 11 12 13 14 15 16 17

w/c 19-Sep 26-Sep 3-Oct 10-Oct 17-Oct 24-Oct 31-Oct 7-Nov 14-Nov 21-Nov 28-Nov 5-Dec 12-Dec

1 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

2 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

3 Rec Live Tut Live Live Tut Live Live Tut Live Live Tut

4 Rec Live OH Live Live OH Live Live OH Live Live OH

Class Tests

CT1 L1 CT2 L2 L3/CT3 L4 CT4

Topics Unit 1 Unit 2 Unit 3 Unit 4

Telecom_M_G2

1 16:35-17:20

2 17:25-18:10

3 19:20-20:05

4 20:10-20:55

Course Details – Module Delivery

• Blended Teaching – How?

̶ Recorded Lectures
• To deliver theoretical/technical details

̶ Live lectures
• Review the past content + Interactive sessions (Quizzes and Q&A)

Telecom_M_G1

1 19:20-20:05

2 20:10-20:55

3 16:35-17:20

4 17:25-18:10

BUPT Week 5 6 7 8 9 10 11 12 13 14 15 16 17

w/c 19-Sep 26-Sep 3-Oct 10-Oct 17-Oct 24-Oct 31-Oct 7-Nov 14-Nov 21-Nov 28-Nov 5-Dec 12-Dec

1 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

2 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

3 Rec Live Tut Live Live Tut Live Live Tut Live Live Tut

4 Rec Live OH Live Live OH Live Live OH Live Live OH

Class Tests

CT1 L1 CT2 L2 L3/CT3 L4 CT4

Topics Unit 1 Unit 2 Unit 3 Unit 4

Telecom_M_G2

1 16:35-17:20

2 17:25-18:10

3 19:20-20:05

4 20:10-20:55

Course Details – Recorded Lectures

• Recorded Lectures

̶ Recorded Lectures
• To deliver theoretical/technical details

• Students should take the recorded lecture before the next live session

Telecom_M_G1

1 19:20-20:05

2 20:10-20:55

3 16:35-17:20

4 17:25-18:10

BUPT Week 5 6 7 8 9 10 11 12 13 14 15 16 17

w/c 19-Sep 26-Sep 3-Oct 10-Oct 17-Oct 24-Oct 31-Oct 7-Nov 14-Nov 21-Nov 28-Nov 5-Dec 12-Dec

1 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

2 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

3 Rec Live Tut Live Live Tut Live Live Tut Live Live Tut

4 Rec Live OH Live Live OH Live Live OH Live Live OH

Class Tests

CT2 L1 CT2 L2 L3/CT3 L4 CT4

Topics Unit 1 Unit 2 Unit 3 Unit 4

Telecom_M_G2

1 16:35-17:20

2 17:25-18:10

3 19:20-20:05

4 20:10-20:55

Course Details – Live Lectures

• Live lectures

̶ Brief review about past recorded lectures

̶ Interactive sessions using Mentimeter
• Going through exercises together + Q&A

Telecom_M_G1

1 19:20-20:05

2 20:10-20:55

3 16:35-17:20

4 17:25-18:10

BUPT Week 5 6 7 8 9 10 11 12 13 14 15 16 17

w/c 19-Sep 26-Sep 3-Oct 10-Oct 17-Oct 24-Oct 31-Oct 7-Nov 14-Nov 21-Nov 28-Nov 5-Dec 12-Dec

1 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

2 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

3 Rec Live Tut Live Live Tut Live Live Tut Live Live Tut

4 Rec Live OH Live Live OH Live Live OH Live Live OH

Class Tests

CT1 L1 CT2 L2 L3/CT3 L4 CT4

Topics Unit 1 Unit 2 Unit 3 Unit 4

Telecom_M_G2

1 16:35-17:20

2 17:25-18:10

3 19:20-20:05

4 20:10-20:55

• 4 times: 10th, 12th, 14th, 16th BUPT week

̶ Telecom_M_Y4_G1, Class 1-3: Monday 6,7 (13:00-14:35) (Room 4-138)

̶ Telecom_M_Y4_G1, Class 4-5: Monday 6,7 (13:00-14:35) (Room 1-101)

̶ Telecom_M_Y4_G2, Class 6-7: Thursday 3,4 (09:50-11:25) (Room 1-101)

̶ Telecom_M_Y4_G2, Class 8-10: Thursday 3,4 (09:50-11:25) (Room 4-138)

Telecom_M_G1

1 19:20-20:05

2 20:10-20:55

3 16:35-17:20

4 17:25-18:10

BUPT Week 5 6 7 8 9 10 11 12 13 14 15 16 17

w/c 19-Sep 26-Sep 3-Oct 10-Oct 17-Oct 24-Oct 31-Oct 7-Nov 14-Nov 21-Nov 28-Nov 5-Dec 12-Dec

1 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

2 Live Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

3 Rec Live Tut Live Live Tut Live Live Tut Live Live Tut

4 Rec Live OH Live Live OH Live Live OH Live Live OH

Class Tests

CT1 L1 CT2 L2 L3/CT3 L4 CT4

Topics Unit 1 Unit 2 Unit 3 Unit 4

Telecom_M_G2

1 16:35-17:20

2 17:25-18:10

3 19:20-20:05

4 20:10-20:55

Assessment

• Exam (80%)

̶ One written exam

• Coursework (20%)

̶ Individual coursework (15%)
• Development of computer vision tasks

• Python and OpenCV

̶ In-class tests (5%)
• Test to be done in each office hour (Four in-class tests)

• Each test covers each unit’s content

• Easy questions using QMPlus

• Top 2 marks (out of 4 tests) will be counted. (2.5% each)

• Absence will be marked as zero (NO excuse of your absence will be accepted)

Assessment – Individual Coursework (1/3)

• In-lab assessment (30% of individual coursework)

̶ During the Lab4 hours

̶ Assessment of your coursework covered in Lab1-3

• Report (70% of individual coursework)

̶ use the provided layout, with provided guideline

̶ at the end of the semester (Deadline: 23:59, 21st December 2022 (UK time))

̶ One .py code to each problem
• Zero mark will be given if the result is not reproducible

• Zero mark will be given if any unauthorized library is used

Assessment – Individual Coursework (2/3)

• In-lab assessment (30%)

̶ will be evaluated by
1) running the implemented codes,
2) checking during the in-lab assessment: the understanding of the tasks with a short
conversation with a TA

• Report (70%)

̶ will be evaluated based on
1) the quality of the analysis
2) the discussion of the results obtained in the coursework tasks

Assessment – Individual Coursework (3/3)

̶ A dataset provided from this module (image + video)
→ Quantitative assessment

̶ A dataset collected by yourself (image + video)
→ Qualitative assessment

Assessment – Coursework Submission@ QMplus

• Submit 1) your report and 2) zip file to the QMplus.

̶ QMplus submission example:
• EBU7240_CHANGJAE_OH_19XXXXXXX.pdf

• EBU7240_CHANGJAE_OH_19XXXXXXX.zip

̶ The zip file will contain the following folders:

̶ Name the zip file you submit as: .zip

̶ Max size of the zip file: 50M

̶ The outputs of your implementations should be generated in the \results directory
• No need to submit the outputs of your code (we will reproduce them!), just make the

\results directory

EBU7240_FIRSTNAME_FAMILYNAME_QMSTUDNETNUMBER
├── inputs
├── results

23:59, 21th Dec 2022

In-class Test

• Four in-class tests

̶ To be done in each office hour
• Less than 10 min

• Students should be in the classroom (Scores will be accepted ONLY WHEN attendance is recorded)

̶ Easy online-test using QMPlus
• Each test covers each unit’s content

• Questions for Telecom_M_G1 and Telecom_M_G2 will be different

• For a fairness issues, ONLY the problems used in the live-session will be covered (with modification)

̶ Top 2 marks will be counted. (2.5% each)
• Absence will be marked as zero

• Any excuse of your absence will NOT be accepted

Office Hours

̶ During office hours (OH), but after the class test (<10 min) ̶ MS Teams • I will post the meeting link through QMPlus • Anyone can drop in with his/her own MS Teams account and have a video meeting A few tips – Exam • Define, define, define! ̶ ex) EBU6230- Image Video processing Opening: M·S=(M S)⊕S A few tips – Coursework • There are several traps to prevent your plagiarism ̶ Don’t copy others ̶ You’ll (sometimes) need to create your own dataset By the end of this module, you will • understand fundamental tasks involved in computer vision tasks • understand the principle of deep learning in computer vision • become familiar with ̶ the various important techniques in computer vision ̶ Python and OpenCV 程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com