留学生辅导 from 3d to 2d

from 3d to 2d

Copyright By PowCoder代写 加微信 powcoder

R esto rstio n

featu re d etectio n

p inho le m o d el

p reserved
straig ht lines, incid ence

no t p reserved ang les, leng th
投影到前面平行的平面
fronto-parallel p lanes

all p o ints o n that p lane are at fixed d ep th z

ang els and ratio s of leng ths/areas

vanishing p o int

find vanishing p o int

vanishing line of the g round p lane

the p o ints hig ht that ho rizo n are ab o ve the cam era p rovid es w ay of co m paring heig ht of o b jects

m easuring heig ht

p ersp ective d istortio n e.g. 球投成椭圆

ortho g rap hic p rojectio n

d istance from center of p rojectio n to im ag e p lane is infinite

p rojectio n m atrix

ap erture size 孔径越大越模糊

cam era w ith tin lens

物距的倒数加像距的倒数等于焦距的倒数

circle of co nfusio n 除了特定距离会in fo cus,其他距离光线落在小范围内

depth of field sm all ap erture size m akes the lig ht m o re fo cus b ut m ake the p o int d arker

field of view larger fo cal leng th m eans sm aller FO V

d istortio n is m o re o b vio us at the ed g e of the lens

d ig ital cam era 求RG B 3*3范围每个通道求平均

uniform m ean filter

b o und ary

zero pad d ing

ad just filter kernel 框内有几个算几个,不额外扩展

可以拆成2个1D kernel

g aussian filter

w hy g aussian filter rem o ve no ise lo w pass filter

so b el filter

Lap lacian filter
hig h pass filter

unsharp m ask 原图减去经过uniform m ean filter的图片,结果叠加到原图上

nonlinear fileter m ax,m in,m ed ian filter 子主题

spatial filtering

g aussian no ise

sp eckle no ise

b rig hter than g aussian no ise

d ifficult to rem o ve d ue to m ultip licatio n

no ise and r

salt and p ep p er no ise

m ed ian filter sam e as L2 m inim isatio n(绝对值求和求中值)

outlier rejectio n m etho d

1.set a thesho ld D

2.co m pare the value p w ith surround ing m ean m

3.if |p-m| > D, p is id entified as a no ise and rep lace it b y m

g aussian no ise

sam p le averag e filter

w ind ow size
sm all w ind o w

unifo rm m ean filter o r g aussian filter

no t effective

large w ind o w o ver-sm o o th

b ilateral filter

co nisd er b o th spatial and intensity d istance

fo r intensity d istence, if the p ixel has sim ilar intensity
w ith the centre o ne, the w eig ht w ill b e hig her

p reserve ed g es

no n-lo cal m eans filter
averag es neig hb o r w ith sim ilar neig hb o urho o d s

no spatial term s

g aussian filter

b ilateral filter

N L-m eans

o nly spatial term

lo w no ise and d etails

spatial term and co nsid er intensity d istance

b etter at no ise rem o val

o nly intensity d istance

sharp, lo w no ise, few artifacts

p erio d ic no ise
FT can g et the freq uency of the w aves and use co unter sig nal to rem o ve it

m o d eled as sinuso id w aves

L1 d istance(平方求和求均值)

easily influnced b y no ise
sho uld rem o ve no ise first

d erivative of G aussian Filter
sm o o thed d erivative rem o ves no ise b ut b lurs ed g e

so b el filter ap p o rxim ate to the d erivative of g aussian filter

Lap lacian filter sensitive to no iseLap lacian of G aussian rem o ve no ise first

C anny ed g e d etector first, im ag e filtering next, no n-m axim um sup p resio n third, d o ub le thresho ld ing

basic id ea co rner has a large chang e in intensity in any d irectio n

H arris co rner d etector

first, co m p ut M m atrix f
o r each w ind o w to g et t
heir co nnerness sco res

seco nd, find p o ints w ho se
surround ing w ind o w g ave
larger co rner resp o nse

third, take the p o ints
of lo cal m axim a

resist to co nner relo catio n, affine intensity chang e

no t resist to scaling

no t scaling

feature d escrip tor

feature m eatching

SIFT d iscrip tor

N N m atching

so lutio n: b lo b d etector b y SIFT

b lo b d etector
find m axim a and m inim a resp o nse w ith d ifferent size of filter

LO G/ D O G
b lack fo r m inim a LO G 中心, w hite fo r m axim a LO G 边缘

extrem um 当sigm a与冲击的宽度相同时,产生极值

find keyp o ints at d ifferent scale

1. d etect cand id ates of interest p o ints, w hich are extrem a p o ints in the scale-space d o m ains

2. sub-p ixel lo calizatio n and rem o ve of extrem a p o ints w ith lo w co ntrast

less sensitive to no ise

3. o rientatio n assig nm ent
take 16*16 w ind o w and co m p ute ed g e o rientatio n fo r each 2*2 b lo ck

throw o ut w eak ed g es and create histog ram

o ne feature m atches to ano ther if tho se feature are
the nearest neig hb o ur and their d istance b elo w T

cross-checking techniq ue 两张图相互映射,如果两点匹配,则保留

another techniq ue 一张图向另一张图映射,第一近的点与第二近的点距离之比小于某一阈值,则保留

4. co m p ut g rad ient histog ram o ver 8-d irectio ns fo r esch 4*4 b lo ck

5. co ncatenate 8-d vectors of 4*$ arrays and no m alize the m ag nitud e of 128-d vector to 1

用bolb检测cond id ate of interst p o ints

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com