程序代写代做代考 cache database compiler Bioinformatics algorithm Hidden Markov Mode data mining graph information theory C 6. DYNAMIC PROGRAMMING I

6. DYNAMIC PROGRAMMING I
‣ weighted interval scheduling ‣ segmented least squares
‣ knapsack problem
‣ RNA secondary structure
Lecture slides by Kevin Wayne
 Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Last updated on 1/15/20 6:20 AM

Algorithmic paradigms
Greed. Process the input in some order, myopically making irrevocable decisions.
Divide-and-conquer. Break up a problem into independent subproblems; solve each subproblem; combine solutions to subproblems to form solution to original problem.
Dynamic programming. Break up a problem into a series of overlapping subproblems; combine solutions to smaller subproblems to form solution to large subproblem.
fancy name for caching intermediate results in a table for later reuse
2

Dynamic programming history
Bellman. Pioneered the systematic study of dynamic programming in 1950s.
E・tymology.
・Dynamic programming = planning over time.
・Secretary of Defense had pathological fear of mathematical research.
Bellman sought a “dynamic” adjective to avoid conflict.
THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN
1. Introduction. Before turning to a discussion of some representa- tive problems which will permit us to exhibit various mathematical features of the theory, let us present a brief survey of the funda- mental concepts, hopes, and aspirations of dynamic programming.
To begin with, the theory was created to treat the mathematical problems arising from the study of various multi-stage decision processes, which may roughly be described in the following way: We have a physical system whose state at any time / is determined by a set of quantities which we call state parameters, or state variables. At certain times, which may be prescribed in advance, or which may be determined by the process itself, we are called upon to make de- cisions which will affect the state of the system. These decisions are equivalent to transformations of the state variables, the choice of a decision being identical with the choice of a transformation. The out- come of the preceding decisions is to be used to guide the choice of future ones, with the purpose of the whole process that of maximizing some function of the parameters describing the final state.
Examples of processes fitting this loose description are furnished by virtually every phase of modern life, from the planning of indus- trial production lines to the scheduling of patients at a medical clinic ; from the determination of long-term investment programs for universities to the determination of a replacement policy for ma- chinery in factories; from the programming of training policies for skilled and unskilled labor to the choice of optimal purchasing and in- ventory policies for department stores and military establishments.
It is abundantly clear from the very brief description of possible applications that the problems arising from the study of these processes are problems of the future as well as of the immediate present.
3
Turning to a more precise discussion, let us introduce a small

Dynamic programming applications
Application areas.
・Computer science: AI, compilers, systems, graphics, theory, …. ・Operations research.
・Information theory.
・Control theory.
・Bioinformatics.
Some famous dynamic programming algorithms.
・Avidan–Shamir for seam carving.
・Unix diff for comparing two files.
・Viterbi for hidden Markov models.
・De Boor for evaluating spline curves.
・Bellman–Ford–Moore for shortest path.
・Knuth–Plass for word wrapping text in T􏰠X. ・Cocke–Kasami–Younger for parsing context-free grammars. ・Needleman–Wunsch/Smith–Waterman for sequence alignment.
4

Dynamic programming books

6. DYNAMIC PROGRAMMING I
‣ weighted interval scheduling ‣ segmented least squares
‣ knapsack problem
‣ RNA secondary structure
SECTIONS 6.1–6.2

Weighted interval scheduling
・Job j starts at sj, finishes at fj, and has weight wj > 0. ・Two jobs are compatible if they don’t overlap.
・Goal: find max-weight subset of mutually compatible jobs.
sj wjfj
b
a
c
d
e
f
g
h
time
0 1 2 3 4 5 6 7 8 9 10 11
7

Earliest-finish-time first algorithm
E・arliest finish-time first.
・Consider jobs in ascending order of finish time.
Add job to subset if it is compatible with previously chosen jobs. Recall. Greedy algorithm is correct if all weights are 1.
Observation. Greedy algorithm fails spectacularly for weighted version.
a
b
h
weight = 999 weight = 1
weight = 1
time
0 1 2 3 4 5 6 7 8 9 10 11
8

Weighted interval scheduling
Convention. Jobs are in ascending order of finish time: f1 ≤ f2 ≤ . . . ≤ fn . Def. p(j) = largest index i < j such that job i is compatible with j. Ex. p(8) = 1, p(7) = 3, p(2) = 0. i is leftmost interval that ends before j begins 1 2 3 4 5 6 7 8 time 0 1 2 3 4 5 6 7 8 9 10 11 9 Dynamic programming: binary choice Def. OPT(j) = max weight of any subset of mutually compatible jobs for subproblem consisting only of jobs 1, 2, ..., j. Goal. OPT(n) = max weight of any subset of mutually compatible jobs. Case 1. OPT(j) does not select job j. ・Must be an optimal solution to problem consisting of remaining jobs 1, 2, ..., j – 1. Case 2. OPT(j) selects job j. ・Collect profit wj. ・Can’t use incompatible jobs { p(j) + 1, p(j) + 2, ..., j – 1 }. ・Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j). optimal substructure property (proof via exchange argument) Bellman equation. OP T (j) = 0 􏰎􏰏 j = 0 max{OPT(j1), wj +OPT(p(j))} 􏰎􏰏j>0
10

Weighted interval scheduling: brute force
BRUTE-FORCE (n, s1, …, sn, f1, …, fn, w1, …, wn) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Sort jobs by finish time and renumber so that f1 ≤ f2 ≤ … ≤ fn. Compute p[1], p[2], …, p[n] via binary search.
RETURN COMPUTE-OPT(n).
COMPUTE-OPT( j ) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
IF (j = 0) RETURN 0.
ELSE
RETURN max {COMPUTE-OPT( j – 1), wj + COMPUTE-OPT( p[ j ]) }.
11

Dynamic programming: quiz 1
What is running time of COMPUTE-OPT(n) in the worst case?

A. Θ(n log n) B. Θ(n2)
C. Θ(1.618n) D. Θ(2n)
(1)
T(n) = 2T(n1) + (1)
􏰎􏰏n=1 􏰎􏰏n>1
COMPUTE-OPT( j ) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
IF (j = 0) RETURN 0.
ELSE
RETURN max {COMPUTE-OPT( j – 1), wj + COMPUTE-OPT( p[ j ]) }.
12

Weighted interval scheduling: brute force
Observation. Recursive algorithm is spectacularly slow because of overlapping subproblems ⇒ exponential-time algorithm.
Ex. Number of recursive calls for family of “layered” instances grows like Fibonacci sequence.
5 43
3221
211010
1
2
3
4
5
p(1) = 0, p(j) = j-2
10
recursion tree
13

Weighted interval scheduling: memoization
Top-down dynamic programming (memoization).
・Cache result of subproblem j in M[j].
・Use M[j] to avoid solving subproblem j more than once.
TOP-DOWN(n, s1, …, sn, f1, …, fn, w1, …, wn) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Sort jobs by finish time and renumber so that f1 ≤ f2 ≤ … ≤ fn. Compute p[1], p[2], …, p[n] via binary search.
M[0] ← 0.
RETURN M-COMPUTE-OPT(n).
global array
M-COMPUTE-OPT( j ) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
IF (M [ j ] is uninitialized)
M[j] ← max { M-COMPUTE-OPT (j – 1), wj + M-COMPUTE-OPT(p[j]) }.
RETURN M [ j ].
14

Weighted interval scheduling: running time
Claim. Memoized version of algorithm takes O(n log n) time. Pf.
・Sort by finish time: O(n log n) via mergesort. ・Compute p[ j ] for each j : O(n log n) via binary search.
・M-COMPUTE-OPT(j): each invocation takes O(1) time and either
– –
・Progress measure Φ = # initialized entries among M [1 . . n ].
– –
・Overall running time of M-COMPUTE-OPT(n) is O(n). ▪
(1) returns an initialized value M[j]
(2) initializes M[j] and makes two recursive calls
initially Φ = 0; throughout Φ ≤ n.
(2) increases Φ by 1 ⇒ ≤ 2n recursive calls.
15

16

Weighted interval scheduling: finding a solution
Q. DP algorithm computes optimal value. How to find optimal solution? A. Make a second pass by calling FIND-SOLUTION(n).
FIND-SOLUTION( j ) _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
IF (j = 0) RETURN ∅.
ELSE IF (wj + M[p[j]] > M[j–1]) RETURN { j } ∪ FIND-SOLUTION(p[ j ]).
ELSE
RETURN FIND-SOLUTION( j – 1).
M[j] = max { M[j–1], wj + M[p[j]] }.
Analysis. # of recursive calls ≤ n ⇒ O(n).
17

Weighted interval scheduling: bottom-up dynamic programming
Bottom-up dynamic programming. Unwind recursion.
BOTTOM-UP(n, s1, …, sn, f1, …, fn, w1, …, wn) _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Sort jobs by finish time and renumber so that f1 ≤ f2 ≤ … ≤ fn. Compute p[1], p[2], …, p[n].
M[0] ← 0. FOR j = 1 TO n
previously computed values
M[j] ← max { M[j–1], wj + M[p[j]] }. _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Running time. The bottom-up version takes O(n log n) time.
18

MAXIMUM SUBARRAY PROBLEM
Goal. Given an array x of n integer (positive or negative), find a contiguous subarray whose sum is maximum.
187
12
5
−1
31
−61
59
26
−53
58
97
−93
−23
84
−15
6
Applications. Computer vision, data mining,
genomic sequence analysis, technical job interviews, ….
19

MAXIMUM RECTANGLE PROBLEM
Goal. Given an n-by-n matrix A, find a rectangle whose sum is maximum.
2 5 052 4 3 1 3 2 5 6 3 5 1
A= 1 1 3 1 4
23 1 1
4 2 11
3 2 31
3 1
3 3 2
0 3 1 1 1 0
13
2 2
12 4 0
Applications. Databases, image processing, maximum likelihood estimation, technical job interviews, …
21

6. DYNAMIC PROGRAMMING I
‣ weighted interval scheduling ‣ segmented least squares
‣ knapsack problem
‣ RNA secondary structure
SECTION 6.3

Least squares
Least squares. Foundational problem in statistics.
・Given n points in the plane: (x1, y1), (x2, y2) , …, (xn, yn).
・Find a line y = ax + b that minimizes the sum of the squared error:
􏰢n i=1
SSE =
(yi−axi−b)2
y
Solution. Calculus ⇒ min error is achieved when
n􏰡i xiyi − (􏰡i xi)(􏰡i yi) 􏰡i yi − a􏰡i xi a= n􏰡ix2i−(􏰡ixi)2 , b= n
24
x

Segmented least squares
S・egmented least squares.
・Points lie roughly on a sequence of several line segments.
Given n points in the plane: (x1, y1), (x2, y2) , …, (xn, yn) with x1 < x2 < ... < xn, find a sequence of lines that minimizes f (x). Q. What is a reasonable choice for f (x) to balance accuracy and parsimony? goodness of fit number of lines y x 25 Segmented least squares Segmented least squares. ・Points lie roughly on a sequence of several line segments. ・Given n points in the plane: (x1, y1), (x2, y2) , ..., (xn, yn) with x1 < x2 < ... < xn, find a sequence of lines that minimizes f (x). G・oal. Minimize f (x) = E + c L for some constant c > 0, where
・E = sum of the sums of the squared errors in each segment.
L = number of lines. y
x
26

Dynamic programming: multiway choice
Notation.
・OPT(j) = minimum cost for points p1, p2, …, pj. ・eij = SSE for for points pi, pi+1, …, pj.
To compute OPT(j):
・Last segment uses points pi, pi+1, …, pj for some i ≤ j.
・Cost = eij + c + OPT(i – 1). Bellman equation.
0
OPT(j) =
1ij
optimal substructure property (proof via exchange argument)
min {eij +c+OPT(i1)}
􏰎 􏰏 j = 0 􏰎􏰏j>0
27

Segmented least squares algorithm
SEGMENTED-LEAST-SQUARES(n, p1, …, pn, c) __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
FOR j = 1 TO n FOR i = 1 TO j
Compute the SSE eij for the points pi, pi+1, …, pj.
M[0] ← 0. FOR j = 1 TO n
previously computed value
M [ j ] ← min 1 ≤ i ≤ j { eij + c + M [ i – 1] }.
RETURN M [ n]. __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
28

Segmented least squares analysis
Theorem. [Bellman 1961] DP algorithm solves the segmented least squares problem in O(n3) time and O(n2) space.
Pf.
・Bottleneck = computing SSE eij for each i and j.
n􏰡k xkyk −(􏰡k xk)(􏰡k yk)
aij = n􏰡kx2k−(􏰡kxk)2 , bij =
・O(n) to compute eij. ▪
R・emark. Can be improved to O(n2) time. i
For each i : precompute cumulative sums
k=1
􏰡k yk −aij 􏰡k xk n
xk, ・Using cumulative sums, can compute eij in O(1) time.
i k=1
yk,
i k=1
x2k,
i k=1
xkyk .
29

6. DYNAMIC PROGRAMMING I
‣ weighted interval scheduling ‣ segmented least squares
‣ knapsack problem
‣ RNA secondary structure
SECTION 6.4

Knapsack problem
G・oal. Pack knapsack so as to maximize total value of items taken. ・There are n items: item i provides value vi > 0 and weighs wi > 0. ・Value of a subset of items = sum of values of individual items.
Knapsack has weight limit of W.
Ex. The subset { 1, 2, 5 } has value $35 (and weight 10).
Ex. The subset { 3, 4 } has value $40 (and weight 11).
Assumption. All values and weights are integral.
i vi wi
$1
$6
$18
$22
1
2
3
4
5 $28
1 kg 2 kg 5 kg 6 kg 7 kg
weights and values can be arbitrary positive integers
Creative Commons Attribution-Share Alike 2.5 by Dake
knapsack instance (weight limit W = 11)
31
2 kg
6 kg
1 kg
5 kg
7 kg
11 kg
$18
$6
$1
$28
$22

Dynamic programming: quiz 2
Which algorithm solves knapsack problem?
A. Greedy-by-value: repeatedly add item with maximum vi.
B. Greedy-by-weight: repeatedly add item with minimum wi.
C. Greedy-by-ratio: repeatedly add item with maximum ratio vi / wi.
D. None of the above.
i vi wi
$1
$6
$18
$22
1
2
3
4
5 $28
1 kg 2 kg 5 kg 6 kg 7 kg
Creative Commons Attribution-Share Alike 2.5 by Dake
knapsack instance (weight limit W = 11)
32
2 kg
6 kg
1 kg
5 kg
7 kg
11 kg
$18
$6
$1
$28
$22

Dynamic programming: quiz 3
Which subproblems?

A. OPT(w) = optimal value of knapsack problem with weight limit w.
B. OPT(i) = optimal value of knapsack problem with items 1, …, i.
C. OPT(i, w) = optimal value of knapsack problem with items 1, …, i subject to weight limit w.
D. Any of the above.
33

Dynamic programming: two variables
Def. OPT(i, w) = optimal value of knapsack problem with items 1, …, i, subject to weight limit w.
Goal. OPT(n,W).
possibly because wi > w
Case 1. OPT(i, w) does not select item i.
・OPT(i, w) selects best of { 1, 2, …, i – 1 } subject to weight limit w.
Case 2. OPT(i, w) selects item i. ・New weight limit = w – wi.
optimal substructure property ・Collect value vi. (proof via exchange argument)
・OPT(i, w) selects best of { 1, 2, …, i – 1 } subject to new weight limit. Bellman equation.
0
OPT(i,w) = OPT(i1,w)
max{OPT(i1,w), vi +OPT(i1,wwi)}
􏰎􏰏 i = 0 􏰎􏰏wi >w 􏰑􏰗􏰚􏰌􏰖􏰛􏰎􏰍􏰌
34

Knapsack problem: bottom-up dynamic programming
KNAPSACK(n, W, w1, …, wn, v1, …, vn ) __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
FOR w = 0 TO W M[0, w] ← 0.
FOR i = 1 TO n FOR w = 0 TO W
previously computed values
IF (wi >w) M[i,w] ← M[i–1,w].
ELSE M[i, w] ← max { M[i–1, w], vi + M[i–1, w – wi] }.
RETURN M[n, W]. __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
0
O P T ( i , w ) = O P T ( i 1 , w )
max{OPT(i1,w), vi +OPT(i1,wwi)}
􏰎 􏰏 i = 0
􏰎 􏰏 w i > w 􏰑􏰗􏰚􏰌􏰖􏰛􏰎􏰍􏰌
35

Knapsack problem: bottom-up dynamic programming demo
i vi wi
0
O P T ( i , w ) = O P T ( i 1 , w )
$1
$6
$18
$22
1
2
3
4
5 $28
1 kg 2 kg 5 kg 6 kg 7 kg
􏰎 􏰏 i = 0
􏰎 􏰏 w i > w max{OPT(i1,w),vi+OPT(i1,wwi} 􏰑􏰗􏰚􏰌􏰖􏰛􏰎􏰍􏰌
weight limit w
0
1
2
3
4
5
6
7
8
9
10
11
{}
0
0
0
0
0
0
0
0
0
0
0
0
{1}
0
1
1
1
1
1
1
1
1
1
1
1
{ 1, 2 }
0
1
6
7
7
7
7
7
7
7
7
7
{ 1, 2, 3 }
0
1
6
7
7
18
19
24
25
25
25
25
{ 1, 2, 3, 4 }
0
1
6
7
7
18
22
24
28
29
29
40
{ 1, 2, 3, 4, 5 }
0
1
6
7
7
18
22
28
29
34
35
40
subset
 of items 1, …, i
OPT(i, w) = optimal value of knapsack problem with items 1, …, i, subject to weight limit w
36

Knapsack problem: running time
Theorem. The DP algorithm solves the knapsack problem with n items and maximum weight W in Θ(n W) time and Θ(n W) space.
Pf. weights are integers ・Takes O(1) time per table entry. between 1 and W
・There are Θ(n W) table entries.
・After computing optimal values, can trace back to find solution:
OPT(i, w) takes item i iff M [i, w] > M [i – 1, w]. ▪
R・emarks.
・Algorithm depends critically on assumption that weights are integral.
Assumption that values are integral was not used.
37

Dynamic programming: quiz 4
Does there exist a poly-time algorithm for the knapsack problem?

A. Yes, because the DP algorithm takes Θ(n W) time.
B. No, because Θ(n W) is not a polynomial function of the input size.
C. No, because the problem is NP-hard.
D. Unknown.
equivalent to P ≠ NP conjecture because knapsack problem is NP-hard
“pseudo-polynomial”
38

COIN CHANGING
Problem. Given n coin denominations { c1, c2, …, cn } and a target value V, find the fewest coins needed to make change for V (or report impossible).
Recall. Greedy cashier’s algorithm is optimal for U.S. coin denominations, but not for arbitrary coin denominations.
Ex. { 1, 10, 21, 34, 70, 100, 350, 1295, 1500 }. Optimal. 140¢ = 70 + 70.
39

6. DYNAMIC PROGRAMMING I
‣ weighted interval scheduling ‣ segmented least squares
‣ knapsack problem
‣ RNA secondary structure
SECTION 6.5

RNA secondary structure
RNA. String B = b1b2…bn over alphabet { A, C, G, U }.
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.
CA AA AU
GC
base
CGUAA G G
U AUUA
base pair
ACGCU CGCGAGC
G
G
G
AU
RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
G
42

RNA secondary structure
S・econdary structure. A set of pairs S = { (bi, bj) } that satisfy: [Watson–Crick] S is a matching and each pair in S is a Watson–Crick
complement: A–U, U–A, C–G, or G–C.
GG CU
G
base pair
in secondary structure
A C
UA
C
ACGUGGCCAU
S is not a secondary structure (C-A is not a valid Watson-Crick pair)
B = ACGUGGCCCAU
S = { (b1, b10), (b2, b9), (b3, b8) }
43

RNA secondary structure
S・econdary structure. A set of pairs S = { (bi, bj) } that satisfy: [Watson–Crick] S is a matching and each pair in S is a Watson–Crick
・complement: A–U, U–A, C–G, or G–C.
[No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (bi, bj) ∈ S, then i < j – 4. G GG CG AU UA B = AUGGGGCAU S = { (b1, b9), (b2, b8), (b3, b7) } AUGGGGCAU S is not a secondary structure
 (≤4 intervening bases between G and C) 44 RNA secondary structure S・econdary structure. A set of pairs S = { (bi, bj) } that satisfy: [Watson–Crick] S is a matching and each pair in S is a Watson–Crick ・complement: A–U, U–A, C–G, or G–C. [No sharp turns] The ends of each pair are separated by at least 4 ・intervening bases. If (bi, bj) ∈ S, then i < j – 4. [Non-crossing] If (b , b ) and (b , b ) are two pairs in S, then we cannot ij kl GG have i < k < j < l. CU U AG UA B = ACUUGGCCAU S = { (b1, b10), (b2, b8), (b3, b9) } C AGUUGGCCAU S is not a secondary structure (G-C and U-A cross) 45 RNA secondary structure S・econdary structure. A set of pairs S = { (bi, bj) } that satisfy: [Watson–Crick] S is a matching and each pair in S is a Watson–Crick ・complement: A–U, U–A, C–G, or G–C. [No sharp turns] The ends of each pair are separated by at least 4 ・intervening bases. If (bi, bj) ∈ S, then i < j – 4. [Non-crossing] If (b , b ) and (b , b ) are two pairs in S, then we cannot ij kl GG have i < k < j < l. CU G AU UA B = AUGUGGCCAU S = { (b1, b10), (b2, b9), (b3, b8) } C AUGUGGCCAU S is a secondary structure (with 3 base pairs) 46 RNA secondary structure Secondary structure. A set of pairs S = { (bi, bj) } that satisfy: ・[Watson–Crick] S is a matching and each pair in S is a Watson–Crick ・complement: A–U, U–A, C–G, or G–C. [No sharp turns] The ends of each pair are separated by at least 4 ・intervening bases. If (bi, bj) ∈ S, then i < j – 4. [Non-crossing] If (b , b ) and (b , b ) are two pairs in S, then we cannot ij kl have i < k < j < l. Free-energy hypothesis. RNA molecule will form the secondary structure with the minimum total free energy. approximate by number of base pairs (more base pairs ⇒ lower free energy) Goal. Given an RNA molecule B = b1b2...bn, find a secondary structure S that maximizes the number of base pairs. 47 Dynamic programming: quiz 5 Is the following a secondary structure? A. Yes. B. No, violates Watson–Crick condition. C. No, violates no-sharp-turns condition. D. No, violates no-crossing condition. GC CGUAAG GCU AUUA G G CGAGC AU G 48 Dynamic programming: quiz 6 Which subproblems? A. OPT(j) = max number of base pairs in secondary structure
 of the substring b1b2 ... bj. B. OPT(j) = max number of base pairs in secondary structure
 of the substring bj bj+1 ... bn. C. Either A or B. D. Neither A nor B. 49 RNA secondary structure: subproblems First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring b1b2 ... bj. Goal. OPT(n). Choice. Match bases bt and bj. 1 match bases bt and bn ・Find secondary structure in Find secondary structure in b1b2 ... bt–1. b b ... b . t+1 t+2 j–1 OPT(t–1) need more subproblems (first base no longer b1) t j last base Difficulty. Results in two subproblems (but one of wrong form). 50 Dynamic programming over intervals Def. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring bi bi+1 ... bj. C・ase 1. If i ≥ j – 4. OPT(i, j) = 0 by no-sharp-turns condition. C・ase 2. Base bj is not involved in a pair. OPT(i, j) = OPT(i, j – 1). C・ase 3. Base bj pairs with bt for some i ≤ t < j – 4. ・Non-crossing condition decouples resulting two subproblems. OPT(i, j ) = 1 + max t { OPT(i, t – 1) + OPT(t + 1, j – 1) }. take max over t such that i ≤ t < j – 4 and bt and bj are Watson–Crick complements match bases bj and bt i tj 51 Dynamic programming: quiz 7 In which order to compute OPT(i, j) ?
 A. Increasing i, then j. B. Increasing j, then i. C. Either A or B. D. Neither A nor B. match bases bj and bt i tj OPT(i, j) depends upon OPT(i, t-1) and OPT(t+1, j-1) 52 Bottom-up dynamic programming over intervals Q. In which order to solve the subproblems? A. Do shortest intervals first—increasing order of ⎜j − i⎟. RNA-SECONDARY-STRUCTURE(n, b1, ..., bn ) __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ FOR k = 5 TO n – 1 FOR i = 1 TO n – k j ← i + k. all needed values are already computed Compute M[i, j] using formula. RETURN M[1, n]. __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 6 7 8 9 10 4 3 i 2 1 order in which to solve subproblems j 0 0 0 0 0 0 Theorem. The DP algorithm solves the RNA secondary structure problem in O(n3) time and O(n2) space. 53 Dynamic programming summary Outline. typically, only a polynomial ・ number of subproblems ・Define a collection of subproblems. ・Solution to original problem can be computed from subproblems. Natural ordering of subproblems from “smallest” to “largest” that enables determining a solution to a subproblem from solutions to smaller subproblems. Techniques. ・Binary choice: weighted interval scheduling. ・Multiway choice: segmented least squares. ・Adding a new variable: knapsack problem. ・Intervals: RNA secondary structure. Top-down vs. bottom-up dynamic programming. Opinions differ. 54