程序代写代做代考 Lambda Calculus Context Free Languages Computational

Computational

Linguistics

Copyright © 2017 Gerald

Penn. All rights reserved.

9A

9A. Mildly Context-Sensitive

Grammar Formalisms

Gerald Penn

Department of Computer Science, University of Toronto

CSC 2501 / 485

Fall 2018

Based on slides by David Smith, Dan Klein, Stephen Clark

and Eva Banik

Combinatory
Categorial Grammar

15

Combinatory Categorial Grammar (CCG)

• Categorial grammar (CG) is one of the
oldest grammar formalisms

• Combinatory Categorial Grammar now well
established and computationally well
founded (Steedman, 1996, 2000)

• Account of syntax; semantics; prodody
and information structure; automatic
parsers; generation

16

• CCG is a lexicalized grammar
• An elementary syntactic structure – for CCG a lexical

category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a
sentence”

• A small number of rules define how categories can
combine

• Rules based on the combinators from Combinatory
Logic

Combinatory Categorial Grammar (CCG)

17

CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more)
• Complex categories are built recursively from atomic categories

and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information
• intransitive verb: S \NP walked
• transitive verb: (S \NP )/NP respected
• ditransitive verb: ((S \NP )/NP )/NP gave

• Complex categories can encode modification
• PP nominal: (NP \NP )/NP
• PP verbal: ((S \NP )\(S \NP ))/NP

18

Simple CCG Derivationccg Grammar 21
A Simple ccg Derivation

interleukin ! 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
< S > forward application
< backward application Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009 19 Function Application Schemata ccg Grammar 22 Function Application Rule Schemata • Forward (>) and backward (<) application: X /Y Y ! X (>)
Y X \Y ! X (<) Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009 20 Classical Categorial Grammar ccg Grammar 23 Classical Categorial Grammar • ‘Classical’ Categorial Grammar only has application rules • Classical Categorial Grammar is context free interleukin-10 inhibits production NP (S\NP)/NP NP S\NP S Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009 21 Classical Categorial Grammar ccg Grammar 24 Classical Categorial Grammar • ‘Classical’ Categorial Grammar only has application rules • Classical Categorial Grammar is context free interleukin-10 inhibits production NP V NP VP S Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200922 ccg Grammar 25 Extraction out of a Relative Clause The company which Microsoft bought NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP NP S/(S\NP) S/NP NP\NP NP > T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

23

ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

24

ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

25

ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

26

ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
< NP Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009 27 ccg Grammar 30 Forward Composition and Type-Raising • Forward composition (>B):

X /Y Y /Z ! X /Z (>B)

• Type-raising (T):

X ! T/(T\X ) (>T)
X ! T\(T/X ) (T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

29

ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

30

ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

31

ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

32

ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive
• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages =

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

33

CCG Semantics

• Categories encode argument sequences
• Parallel syntactic combinator operations

and lambda calculus semantic operations

!”

#$%&'()*+,)-&./0()/1

! 203()*+4$’&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0’+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+ .&0:$)()*= ! >(/4+3.$909(‘(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!”#$%$&’ /4&+&)&;1+40:+)(*4/+I(:($)+*$**’&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+ 5(/4+BCD+-$)8(%&)-&= ! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+ :1;9$'(-0''1+0)1501= ! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+(/4+3.$909(‘(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!”#$%$&’ /4&+&)&;1+40:+)(*4/+I(:($)+*$**’&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+ 5(/4+BCD+-$)8(%&)-&= ! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+ :1;9$'(-0''1+0)1501= ! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+