程序代写代做代考 —


title: ”
output:
word_document: default
pdf_document: default

# 1
“`{r, message=FALSE, warning=FALSE}
fLikert <- read.table('fLikert.dat.txt', head=T) dat <- fLikert[seq(1, 20, by=5)] descripstat <- function(x){ x <- sort(x) N <- length(x) Med <- ifelse(N %% 2 == 1, x[(N+1)/2], x[N/2]/2 + x[N/2+1]/2) Max <- x[N] Min <- x[1] Range <- Max - Min Mean <- round(sum(x) / N, 2) Std <- round(sqrt(sum((x - Mean)^2) / (N-1)), 2) return(c(N=N, Median=Med, Minimum=Min, Maximum=Max, Range=Range, Mean=Mean, StdDev=Std)) } apply(dat, 2, descripstat) library(psych) apply(dat, 2, describe) ``` The results are consistent with the resluts of describe() function in the 'psych' package. ```{r} cor(dat, method='pearson') cor(dat, method='spearman') cor(dat, method='kendall') ``` It does not matter here. The difference between the two correlation coefficients is not significant. The difference between the median and the mean is more significant. # 2 ```{r} potroy <- read.table('potroy.dat.txt', head=T) dep4.n <- (potroy$dep4 - mean(potroy$dep4)) / sd(potroy$dep4) dep1.n <- (potroy$dep1 - mean(potroy$dep1)) / sd(potroy$dep1) dep2.n <- (potroy$dep2 - mean(potroy$dep2)) / sd(potroy$dep2) dep3.n <- (potroy$dep3 - mean(potroy$dep3)) / sd(potroy$dep3) lm(dep4.n ~ dep1.n + dep2.n + dep3.n) lm(scale(potroy$dep4) ~ scale(potroy$dep1) + scale(potroy$dep2) + scale(potroy$dep3)) ``` # 3 ```{r} fLikert <- read.table('fLikert.dat.txt', head=T) id <- rep(1:27, 20) food_type <- rep(1:4, each=nrow(fLikert)*5) flkrt <- unlist(fLikert[,1:20]) longdat <- data.frame(id=id, food_type=food_type, flkrt=flkrt) head(longdat, 30) mean(longdat$flkrt[1:135]) mean(longdat$flkrt[1:135+135]) mean(longdat$flkrt[1:135+135*2]) mean(longdat$flkrt[1:135+135*3]) ``` The means for the four different food types are 3.76, 4.11, 2.43 and 3.35, respectively. The smallest is Challenging food, and the largest is Fast food. ```{r} head(longdat[order(longdat$id), ], 20) ``` # 4 ```{r} runningSum <- function(x){ res <- x[1] for(i in 2:length(x)) res[i] <- res[i-1] + x[i] return(res) } First <- c(1, 2, 3, 5, 4, 3, 6, 4, 3, 5, 7, 7, 9, 8) runningSum(First) Second <- c(2, 4, 5, 8, 7, 10, 10, 11, 11, 14, 17, 18, 21, 24) runningSum(Second) runningSum(Second) - runningSum(First) ``` The differences are positive.