CS计算机代考程序代写 compiler ///////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 – 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the “Software”), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_vec4
/// @file glm/gtx/simd_vec4.hpp
/// @date 2009-05-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
/// @ingroup gtx
///
/// @brief SIMD implementation of vec4 type.
///
/// need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////

#pragma once

// Dependency:
#include “../glm.hpp”

#if(GLM_ARCH != GLM_ARCH_PURE)

#if(GLM_ARCH & GLM_ARCH_SSE2)
# include “../detail/intrinsic_common.hpp”
# include “../detail/intrinsic_geometric.hpp”
# include “../detail/intrinsic_integer.hpp”
#else
# error “GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics”
#endif

#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message(“GLM: GLM_GTX_simd_vec4 extension included”)
#endif

// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif

namespace glm
{
enum comp
{
X = 0,
R = 0,
S = 0,
Y = 1,
G = 1,
T = 1,
Z = 2,
B = 2,
P = 2,
W = 3,
A = 3,
Q = 3
};

}//namespace glm

namespace glm{
namespace detail
{
/// 4-dimensional vector implemented using SIMD SEE intrinsics.
/// \ingroup gtx_simd_vec4
GLM_ALIGNED_STRUCT(16) fvec4SIMD
{
typedef __m128 value_type;
typedef std::size_t size_type;
static size_type value_size();

typedef fvec4SIMD type;
typedef tvec4 bool_type;

#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif

//////////////////////////////////////
// Implicit basic constructors

fvec4SIMD();
fvec4SIMD(__m128 const & Data);
fvec4SIMD(fvec4SIMD const & v);

//////////////////////////////////////
// Explicit basic constructors

explicit fvec4SIMD(
ctor);
explicit fvec4SIMD(
float const & s);
explicit fvec4SIMD(
float const & x,
float const & y,
float const & z,
float const & w);
explicit fvec4SIMD(
vec4 const & v);

////////////////////////////////////////
//// Conversion vector constructors

fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
fvec4SIMD(vec3 const & v, float const & s);
fvec4SIMD(float const & s, vec3 const & v);
fvec4SIMD(vec2 const & v1, vec2 const & v2);
//fvec4SIMD(ivec4SIMD const & v);

//////////////////////////////////////
// Unary arithmetic operators

fvec4SIMD& operator= (fvec4SIMD const & v);
fvec4SIMD& operator+=(fvec4SIMD const & v);
fvec4SIMD& operator-=(fvec4SIMD const & v);
fvec4SIMD& operator*=(fvec4SIMD const & v);
fvec4SIMD& operator/=(fvec4SIMD const & v);

fvec4SIMD& operator+=(float const & s);
fvec4SIMD& operator-=(float const & s);
fvec4SIMD& operator*=(float const & s);
fvec4SIMD& operator/=(float const & s);

fvec4SIMD& operator++();
fvec4SIMD& operator–();

//////////////////////////////////////
// Swizzle operators

template
fvec4SIMD& swizzle();
template
fvec4SIMD swizzle() const;
template
fvec4SIMD swizzle() const;
template
fvec4SIMD swizzle() const;
template
fvec4SIMD swizzle() const;
};
}//namespace detail

typedef glm::detail::fvec4SIMD simdVec4;

/// @addtogroup gtx_simd_vec4
/// @{

//! Convert a simdVec4 to a vec4.
/// @see gtx_simd_vec4
vec4 vec4_cast(
detail::fvec4SIMD const & x);

//! Returns x if x >= 0; otherwise, it returns -x.
/// @see gtx_simd_vec4
detail::fvec4SIMD abs(detail::fvec4SIMD const & x);

//! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0. /// @see gtx_simd_vec4 detail::fvec4SIMD sign(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer that is less then or equal to x. /// @see gtx_simd_vec4 detail::fvec4SIMD floor(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x //! whose absolute value is not larger than the absolute value of x. /// @see gtx_simd_vec4 detail::fvec4SIMD trunc(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x. //! The fraction 0.5 will round in a direction chosen by the //! implementation, presumably the direction that is fastest. //! This includes the possibility that round(x) returns the //! same value as roundEven(x) for all values of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD round(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer to x. //! A fractional part of 0.5 will round toward the nearest even //! integer. (Both 3.5 and 4.5 for x will return 4.0.) /// /// @see gtx_simd_vec4 //detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x); //! Returns a value equal to the nearest integer //! that is greater than or equal to x. /// @see gtx_simd_vec4 detail::fvec4SIMD ceil(detail::fvec4SIMD const & x); //! Return x - floor(x). /// /// @see gtx_simd_vec4 detail::fvec4SIMD fract(detail::fvec4SIMD const & x); //! Modulus. Returns x - y * floor(x / y) //! for each component in x using the floating point value y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mod( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); //! Modulus. Returns x - y * floor(x / y) //! for each component in x using the floating point value y. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mod( detail::fvec4SIMD const & x, float const & y); //! Returns the fractional part of x and sets i to the integer //! part (as a whole number floating point value). Both the //! return value and the output parameter will have the same //! sign as x. //! (From GLM_GTX_simd_vec4 extension, common function) //detail::fvec4SIMD modf( // detail::fvec4SIMD const & x, // detail::fvec4SIMD & i); //! Returns y if y < x; otherwise, it returns x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD min( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); detail::fvec4SIMD min( detail::fvec4SIMD const & x, float const & y); //! Returns y if x < y; otherwise, it returns x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD max( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y); detail::fvec4SIMD max( detail::fvec4SIMD const & x, float const & y); //! Returns min(max(x, minVal), maxVal) for each component in x //! using the floating-point values minVal and maxVal. /// /// @see gtx_simd_vec4 detail::fvec4SIMD clamp( detail::fvec4SIMD const & x, detail::fvec4SIMD const & minVal, detail::fvec4SIMD const & maxVal); detail::fvec4SIMD clamp( detail::fvec4SIMD const & x, float const & minVal, float const & maxVal); //! \return If genTypeU is a floating scalar or vector: //! Returns x * (1.0 - a) + y * a, i.e., the linear blend of //! x and y using the floating-point value a. //! The value for a is not restricted to the range [0, 1]. //! //! \return If genTypeU is a boolean scalar or vector: //! Selects which vector each returned component comes //! from. For a component of a that is false, the //! corresponding component of x is returned. For a //! component of a that is true, the corresponding //! component of y is returned. Components of x and y that //! are not selected are allowed to be invalid floating point //! values and will have no effect on the results. Thus, this //! provides different functionality than //! genType mix(genType x, genType y, genType(a)) //! where a is a Boolean vector. //! //! From GLSL 1.30.08 specification, section 8.3 //! //! \param[in] x Floating point scalar or vector. //! \param[in] y Floating point scalar or vector. //! \param[in] a Floating point or boolean scalar or vector. //! /// \todo Test when 'a' is a boolean. /// /// @see gtx_simd_vec4 detail::fvec4SIMD mix( detail::fvec4SIMD const & x, detail::fvec4SIMD const & y, detail::fvec4SIMD const & a); //! Returns 0.0 if x < edge, otherwise it returns 1.0. /// /// @see gtx_simd_vec4 detail::fvec4SIMD step( detail::fvec4SIMD const & edge, detail::fvec4SIMD const & x); detail::fvec4SIMD step( float const & edge, detail::fvec4SIMD const & x); //! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
//! performs smooth Hermite interpolation between 0 and 1
//! when edge0 < x < edge1. This is useful in cases where //! you would want a threshold function with a smooth //! transition. This is equivalent to: //! genType t; //! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1); //! return t * t * (3 - 2 * t); //! Results are undefined if edge0 >= edge1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD smoothstep(
detail::fvec4SIMD const & edge0,
detail::fvec4SIMD const & edge1,
detail::fvec4SIMD const & x);

detail::fvec4SIMD smoothstep(
float const & edge0,
float const & edge1,
detail::fvec4SIMD const & x);

//! Returns true if x holds a NaN (not a number)
//! representation in the underlying implementation’s set of
//! floating point representations. Returns false otherwise,
//! including for implementations with no NaN
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isnan(detail::fvec4SIMD const & x);

//! Returns true if x holds a positive infinity or negative
//! infinity representation in the underlying implementation’s
//! set of floating point representations. Returns false
//! otherwise, including for implementations with no infinity
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isinf(detail::fvec4SIMD const & x);

//! Returns a signed or unsigned integer value representing
//! the encoding of a floating-point value. The floatingpoint
//! value’s bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);

//! Returns a floating-point value corresponding to a signed
//! or unsigned integer encoding of a floating-point value.
//! If an inf or NaN is passed in, it will not signal, and the
//! resulting floating point value is unspecified. Otherwise,
//! the bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);

//! Computes and returns a * b + c.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fma(
detail::fvec4SIMD const & a,
detail::fvec4SIMD const & b,
detail::fvec4SIMD const & c);

//! Splits x into a floating-point significand in the range
//! [0.5, 1.0) and an integral exponent of two, such that:
//! x = significand * exp(2, exponent)
//! The significand is returned by the function and the
//! exponent is returned in the parameter exp. For a
//! floating-point value of zero, the significant and exponent
//! are both zero. For a floating-point value that is an
//! infinity or is not a number, the results are undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);

//! Builds a floating-point number from x and the
//! corresponding integral exponent of two in exp, returning:
//! significand * exp(2, exponent)
//! If this product is too large to be represented in the
//! floating-point type, the result is undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);

//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
float length(
detail::fvec4SIMD const & x);

//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength.
///
/// @see gtx_simd_vec4
float fastLength(
detail::fvec4SIMD const & x);

//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength.
///
/// @see gtx_simd_vec4
float niceLength(
detail::fvec4SIMD const & x);

//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD length4(
detail::fvec4SIMD const & x);

//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastLength4(
detail::fvec4SIMD const & x);

//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD niceLength4(
detail::fvec4SIMD const & x);

//! Returns the distance betwwen p0 and p1, i.e., length(p0 – p1).
///
/// @see gtx_simd_vec4
float distance(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);

//! Returns the distance betwwen p0 and p1, i.e., length(p0 – p1).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD distance4(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);

//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
float simdDot(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);

//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD dot4(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);

//! Returns the cross product of x and y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD cross(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);

//! Returns a vector in the same direction as x but with length of 1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD normalize(
detail::fvec4SIMD const & x);

//! Returns a vector in the same direction as x but with length of 1.
//! Less accurate but much faster than simdNormalize.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastNormalize(
detail::fvec4SIMD const & x);

//! If dot(Nref, I) < 0.0, return N, otherwise, return -N. /// /// @see gtx_simd_vec4 detail::fvec4SIMD simdFaceforward( detail::fvec4SIMD const & N, detail::fvec4SIMD const & I, detail::fvec4SIMD const & Nref); //! For the incident vector I and surface orientation N, //! returns the reflection direction : result = I - 2.0 * dot(N, I) * N. /// /// @see gtx_simd_vec4 detail::fvec4SIMD reflect( detail::fvec4SIMD const & I, detail::fvec4SIMD const & N); //! For the incident vector I and surface normal N, //! and the ratio of indices of refraction eta, //! return the refraction vector. /// /// @see gtx_simd_vec4 detail::fvec4SIMD refract( detail::fvec4SIMD const & I, detail::fvec4SIMD const & N, float const & eta); //! Returns the positive square root of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD sqrt( detail::fvec4SIMD const & x); //! Returns the positive square root of x with the nicest quality but very slow. //! Slightly more accurate but much slower than simdSqrt. /// /// @see gtx_simd_vec4 detail::fvec4SIMD niceSqrt( detail::fvec4SIMD const & x); //! Returns the positive square root of x //! Less accurate but much faster than sqrt. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastSqrt( detail::fvec4SIMD const & x); //! Returns the reciprocal of the positive square root of x. /// /// @see gtx_simd_vec4 detail::fvec4SIMD inversesqrt( detail::fvec4SIMD const & x); //! Returns the reciprocal of the positive square root of x. //! Faster than inversesqrt but less accurate. /// /// @see gtx_simd_vec4 detail::fvec4SIMD fastInversesqrt( detail::fvec4SIMD const & x); /// @} }//namespace glm #include "simd_vec4.inl" #if (GLM_COMPILER & GLM_COMPILER_VC) # pragma warning(pop) #endif #endif//(GLM_ARCH != GLM_ARCH_PURE)