CS计算机代考程序代写 compiler ///////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 – 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the “Software”), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_quat
/// @file glm/gtx/simd_quat.hpp
/// @date 2013-04-22 / 2014-11-25
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_quat GLM_GTX_simd_quat
/// @ingroup gtx
///
/// @brief SIMD implementation of quat type.
///
/// need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////

#pragma once

// Dependency:
#include “../glm.hpp”
#include “../gtc/quaternion.hpp”
#include “../gtx/fast_trigonometry.hpp”

#if(GLM_ARCH != GLM_ARCH_PURE)

#if(GLM_ARCH & GLM_ARCH_SSE2)
# include “../gtx/simd_mat4.hpp”
#else
# error “GLM: GLM_GTX_simd_quat requires compiler support of SSE2 through intrinsics”
#endif

#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message(“GLM: GLM_GTX_simd_quat extension included”)
#endif

// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif

namespace glm{
namespace detail
{
GLM_ALIGNED_STRUCT(16) fquatSIMD
{
typedef __m128 value_type;
typedef std::size_t size_type;
static size_type value_size();

typedef fquatSIMD type;
typedef tquat bool_type;

#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif

//////////////////////////////////////
// Implicit basic constructors

fquatSIMD();
fquatSIMD(__m128 const & Data);
fquatSIMD(fquatSIMD const & q);

//////////////////////////////////////
// Explicit basic constructors

explicit fquatSIMD(
ctor);
explicit fquatSIMD(
float const & w,
float const & x,
float const & y,
float const & z);
explicit fquatSIMD(
quat const & v);
explicit fquatSIMD(
vec3 const & eulerAngles);

//////////////////////////////////////
// Unary arithmetic operators

fquatSIMD& operator =(fquatSIMD const & q);
fquatSIMD& operator*=(float const & s);
fquatSIMD& operator/=(float const & s);
};

//////////////////////////////////////
// Arithmetic operators

detail::fquatSIMD operator- (
detail::fquatSIMD const & q);

detail::fquatSIMD operator+ (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);

detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);

detail::fvec4SIMD operator* (
detail::fquatSIMD const & q,
detail::fvec4SIMD const & v);

detail::fvec4SIMD operator* (
detail::fvec4SIMD const & v,
detail::fquatSIMD const & q);

detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
float s);

detail::fquatSIMD operator* (
float s,
detail::fquatSIMD const & q);

detail::fquatSIMD operator/ (
detail::fquatSIMD const & q,
float s);

}//namespace detail

/// @addtogroup gtx_simd_quat
/// @{

typedef glm::detail::fquatSIMD simdQuat;

//! Convert a simdQuat to a quat.
/// @see gtx_simd_quat
quat quat_cast(
detail::fquatSIMD const & x);

//! Convert a simdMat4 to a simdQuat.
/// @see gtx_simd_quat
detail::fquatSIMD quatSIMD_cast(
detail::fmat4x4SIMD const & m);

//! Converts a mat4 to a simdQuat.
/// @see gtx_simd_quat
template
detail::fquatSIMD quatSIMD_cast(
tmat4x4 const & m);

//! Converts a mat3 to a simdQuat.
/// @see gtx_simd_quat
template
detail::fquatSIMD quatSIMD_cast(
tmat3x3 const & m);

//! Convert a simdQuat to a simdMat4
/// @see gtx_simd_quat
detail::fmat4x4SIMD mat4SIMD_cast(
detail::fquatSIMD const & q);

//! Converts a simdQuat to a standard mat4.
/// @see gtx_simd_quat
mat4 mat4_cast(
detail::fquatSIMD const & q);

/// Returns the length of the quaternion.
///
/// @see gtx_simd_quat
float length(
detail::fquatSIMD const & x);

/// Returns the normalized quaternion.
///
/// @see gtx_simd_quat
detail::fquatSIMD normalize(
detail::fquatSIMD const & x);

/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + …
///
/// @see gtx_simd_quat
float dot(
detail::fquatSIMD const & q1,
detail::fquatSIMD const & q2);

/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
/// @see – slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD mix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);

/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
detail::fquatSIMD lerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);

/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtx_simd_quat
detail::fquatSIMD slerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);

/// Faster spherical linear interpolation of two unit length quaternions.
///
/// This is the same as mix(), except for two rules:
/// 1) The two quaternions must be unit length.
/// 2) The interpolation factor (a) must be in the range [0, 1].
///
/// This will use the equivalent to fastAcos() and fastSin().
///
/// @see gtx_simd_quat
/// @see – mix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastMix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);

/// Identical to fastMix() except takes the shortest path.
///
/// The same rules apply here as those in fastMix(). Both quaternions must be unit length and ‘a’ must be
/// in the range [0, 1].
///
/// @see – fastMix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
/// @see – slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastSlerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);

/// Returns the q conjugate.
///
/// @see gtx_simd_quat
detail::fquatSIMD conjugate(
detail::fquatSIMD const & q);

/// Returns the q inverse.
///
/// @see gtx_simd_quat
detail::fquatSIMD inverse(
detail::fquatSIMD const & q);

/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtx_simd_quat
detail::fquatSIMD angleAxisSIMD(
float const & angle,
vec3 const & axis);

/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param x x component of the x-axis, x, y, z must be a normalized axis
/// @param y y component of the y-axis, x, y, z must be a normalized axis
/// @param z z component of the z-axis, x, y, z must be a normalized axis
///
/// @see gtx_simd_quat
detail::fquatSIMD angleAxisSIMD(
float const & angle,
float const & x,
float const & y,
float const & z);

// TODO: Move this to somewhere more appropriate. Used with fastMix() and fastSlerp().
/// Performs the equivalent of glm::fastSin() on each component of the given __m128.
__m128 fastSin(__m128 x);

/// @}
}//namespace glm

#include “simd_quat.inl”

#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif

#endif//(GLM_ARCH != GLM_ARCH_PURE)