CS计算机代考程序代写 Perceptrons-NumPy¶

Perceptrons-NumPy¶

Implementation of the classic Perceptron by Frank Rosenblatt for binary classification (here: 0/1 class labels) in NumPy

Imports¶
In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Preparing a toy dataset¶
In [2]:
##########################
### DATASET
##########################

data = np.genfromtxt(‘perceptron_toydata.txt’, delimiter=’\t’)
X, y = data[:, :2], data[:, 2]
y = y.astype(np.int)

print(‘Class label counts:’, np.bincount(y))
print(‘X.shape:’, X.shape)
print(‘y.shape:’, y.shape)

# Shuffling & train/test split
shuffle_idx = np.arange(y.shape[0])
shuffle_rng = np.random.RandomState(123)
shuffle_rng.shuffle(shuffle_idx)
X, y = X[shuffle_idx], y[shuffle_idx]

X_train, X_test = X[shuffle_idx[:70]], X[shuffle_idx[70:]]
y_train, y_test = y[shuffle_idx[:70]], y[shuffle_idx[70:]]

# Normalize (mean zero, unit variance)
mu, sigma = X_train.mean(axis=0), X_train.std(axis=0)
X_train = (X_train – mu) / sigma
X_test = (X_test – mu) / sigma

Class label counts: [50 50]
X.shape: (100, 2)
y.shape: (100,)
In [3]:
plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], label=’class 0′, marker=’o’)
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], label=’class 1′, marker=’s’)
plt.title(‘Training set’)
plt.xlabel(‘feature 1’)
plt.ylabel(‘feature 2′)
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend()
plt.show()


In [4]:
plt.scatter(X_test[y_test==0, 0], X_test[y_test==0, 1], label=’class 0′, marker=’o’)
plt.scatter(X_test[y_test==1, 0], X_test[y_test==1, 1], label=’class 1′, marker=’s’)
plt.title(‘Test set’)
plt.xlabel(‘feature 1’)
plt.ylabel(‘feature 2’)
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend()
plt.show()

Defining the Perceptron model¶
In [4]:
class Perceptron():
def __init__(self, num_features):
self.num_features = num_features
self.weights = np.zeros((num_features, 1), dtype=np.float)
self.bias = np.zeros(1, dtype=np.float)

def forward(self, x):
linear = np.dot(x, self.weights) + self.bias
predictions = np.where(linear > 0., 1, 0)
return predictions

def backward(self, x, y):
predictions = self.forward(x)
errors = y – predictions
return errors

def train(self, x, y, epochs):
for e in range(epochs):

for i in range(y.shape[0]):
errors = self.backward(x[i].reshape(1, self.num_features), y[i]).reshape(-1)
self.weights += (errors * x[i]).reshape(self.num_features, 1)
self.bias += errors

def evaluate(self, x, y):
predictions = self.forward(x).reshape(-1)
accuracy = np.sum(predictions == y) / y.shape[0]
return accuracy

Training the Perceptron¶
In [7]:
ppn = Perceptron(num_features=2)

ppn.train(X_train, y_train, epochs=5)

print(‘Model parameters:\n\n’)
print(‘ Weights: %s\n’ % ppn.weights)
print(‘ Bias: %s\n’ % ppn.bias)

Model parameters:

Weights: [[1.27340847]
[1.34642288]]

Bias: [-1.]

Evaluating the model¶
In [8]:
test_acc = ppn.evaluate(X_test, y_test)
print(‘Test set accuracy: %.2f%%’ % (test_acc*100))

Test set accuracy: 93.33%
In [9]:
##########################
### 2D Decision Boundary
##########################

w, b = ppn.weights, ppn.bias

x_min = -2
y_min = ( (-(w[0] * x_min) – b[0])
/ w[1] )

x_max = 2
y_max = ( (-(w[0] * x_max) – b[0])
/ w[1] )

fig, ax = plt.subplots(1, 2, sharex=True, figsize=(7, 3))

ax[0].plot([x_min, x_max], [y_min, y_max])
ax[1].plot([x_min, x_max], [y_min, y_max])

ax[0].scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], label=’class 0′, marker=’o’)
ax[0].scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], label=’class 1′, marker=’s’)

ax[1].scatter(X_test[y_test==0, 0], X_test[y_test==0, 1], label=’class 0′, marker=’o’)
ax[1].scatter(X_test[y_test==1, 0], X_test[y_test==1, 1], label=’class 1′, marker=’s’)

ax[1].legend(loc=’upper left’)
plt.show()