CS计算机代考程序代写 AI kernel Methods SUMS

kernel Methods SUMS
0Th
Ainput Ird
attributes
Cn
pveryhigh p n pas
MS
IRP
feature map features
features
gradient descent
O’t O ta EEy Otona Cain
Kp
each iteration Ofnp time key observation
O Piola O E IRP
New algo update p OEnpitxyOtome cn
pi
n parameters
using
Loop
IRP
for some pi
Bn GR PEIR
new
p parameters

pi t x y Oto nil
pit dcy 4 B locum TQln
pi e
x
y EEp w
n
44cm’D loca
p
ap bp
pit
Precompute n Clock
0cal
a Cai
abp bbi Z ai bi
ieI
local Ollie can often be computed much
faster withoutexplicitlycomputing4C
cubic polynomials
si
I 1EdKiZit.ggkiY2tZjt 4dn7 I
IE.aiws Eiu
Ui
eg
kjNk2i32K
Eis
Rize
EIRize
Rj Ein zj
Wj
4272
Old tune

Edziza Ln 25
IEn z IIYu2k Old time
locallolz Lt Cn27t Cn25t Cq233
Old
10K QG7
is kernel function
p
time
Ltd t d4d3 dh
Mercer kernels
k n 2 K a
K IRD x IRD
IR
compute
kna rt entries
f 4J
O p 0 n’d time
0
K E IR
Kla
p is p t x J Kp
p Bit L I Qadi Loop pi y Pj In
pit x y j kernel matrix
p
k
ni WD
Kig
xd
0cm Test time given u how to predict OT x
time
piClan 30cal IEBikCn a
Otoh Ei psilocin Jolla
Is

linear in examples independentof p preprocessing Ocn’d
training
function KC n is valid kernel fn
training
0 nd Deeper Observation
Test time
Ofw
x iterations assuming KC can be
computed in Cfd time theonly thing youneed is KC
if
7 of St Kla 2
Lolcat 011277
some KC
Verify validity by math
argo
Design
Other algos perception
algo for knear
can also be Kernelized logistic regression
0Th
loca
rewrite algo st it only depends on 4014011237
kernel fans
replace n by
Kcaz Khe z
Kca2
It R2 T Getz t Getz ERTZ 2
NZ 1C lol
Ege.mn

polynomial 2 UTZ1 C K kernel KEY
11 3112
Cd
monomials
Kee 2 exp
Ldn lolz dimensional
valid
cond
kernel
Necessary
h examples al xd
kernel matrix Ky Claim kernel matrix is
Kfk nm
positive semidefinite
ZO also sufficient
Theorem Mercer 1909
K RdxRd IR is a valid kernel fn
ncos and any n a EIRA the kernel matrix Ky K ni Wl a
k
ZKZ7,0 V2EIR
forany
if
protein sequence classification 20 amino acids
ABC Qn
positive semidefinite
eg
AAAA
AAA B i
204
160,000

ann
flu 01Gt can be computed via dynamic programming
SVM
support vector machines linear
k wthTb ¦Ìq
x
o
x
X
i EEL I
x
y
a win b o fond w b
n wtfla b o
knear in Kennel space

4h
a
w
if y yi
find
u
b St
I
I
choose the b
Among all
WTI’t b o WTI’t b LO
that gives the most separation
T
r
or
O o
b
satisfy
him dust Cail decision boundary
Muff
Fact
Max
wb iE
yi
dat Ca
winbo fL boundary lwTn
11W112
win
1
wise b
ya
b
min y Ih

facts
scaling
invariant
Yb
cow lob
min KWIK StyawinebzI fl
nontrivial need KKT conda Optimal solo w he satisfies
w IILin ya di 30 HER
X is optimal son of program
wk Fitri I yy did
St 9120
Cn9n
Kla
a
r
nTdi
E dioica
O kl
yd
w
test
yes
Enix
time
w T cn IE trifocal local
yi Kca a
y