CS计算机代考程序代写 GMM FWA.vn

FWA.vn
c.ws e subspace
9PCASorssraee structure
PN
FentorAnalysis
had IDEA Posit
spoiler
technically
pfxlu.ge
P
Gmm K means
Facron
anneys PCA
T
TODAY’s lecture x cRd
USE to reduce dineralas Estimating Gaussian haro whenneed
IT kexpftcxustE’cx uB ei
Gives x
EDATA points much smaller than dims
look
is full Rank but lower params
some structure
Subspace
exaleuse
det_o
AT cases Assumptions so that
undefined

RECALL MLE for Gaussian Is Equivalent to
IE x ut x n t log181
If is full rank On II E x ie o ¦Ì In
BuildngB.la c1
Suppose INDEPENDENT And identical covariance
COVARIANCE ARE circles
io
mining
Xii
let202 myIC tdlog2
EC’tn o eneo 02 Id4x ufcx ie
SUBTRAET MEAN AND SQUARE All Entries
if

BuildingBlock 2
E
SET Zi of Mz z
this is d problems for Enea 1 dimension II25 Xi estt lo z
ofLCx a5
O
T nmodeTPARAMETER.SU
o same IDEA
Axis Alegwerselapse as ABOVE
EIIEZI’t A5
logz
CRd N CRd’s
OI c lRd d MODEL
DiagonalMATRIX
P HZ PLZ
N o I ERSforeSed smaeedim
P
x z z
2 Is latent
¦Ì t NZ t C on xn N ie Nz ET
maps From small latentSPACE to large SPACE
X
MEAN IN
t h es p r e e
l GENERATE 2 2 from NCO D
C N M I O O I
251n5 X¦ÌtNZtE
Noisy
D

I1I 2SupposeN I
l zoo
¦Ì Nz
x
tttt
3 Add¦Ì X 4 Add c
So Small LATENT SPACE PRODUCES DATA IN high dim SPACE
TECHNical.TO
Block GAUSSIANS
8
Bigspace
DATA WEwouldOBSERVEAREPurpleDots
Cs
7 zoo
cRd de de Idi
69 EEL wz cRdixdii.jc.si23
I
x c Rd xcR
IS widelyOSED AND helpful For GaussIANS PLA HIM
Fact PIX Xz NIllya 42
ell t e Xz
iz ¦Ì z zz Uz
NOTATION
FAET 1 PCx PlexXz
MARGINALIZATION CNotsurprising
conditioning

112 z z Proofsowline 4APPY to Add
matrixInversionlemma
19
BACK.to ncTOR ANalqss
Gaussian Another GAUSSIAN CLOSED
Marginalization Conditioning
WE HAVE formula for PARAMETERS
X ¦Ì t NZ SINCE EEZ _o
Ex
ElzztnT
E IN2 te Nztef
E
t E
E n Wheat is
N Ion E EzzT I
u
t.EC C.x u5I
Eu E Lxa Lxust
E E
II Nzzth NRT t
AT
t E EE I
0
In
II

E MSTEI
Somnay
I
Qi Z P Z IX Q WE HAVE CLOSED forms
USE conditional
I
Cneton Analysis
WE LEARNED ABOUT FACTORAnalysis flattenslowdim STRUCTURE WE SAW How to ESTIMATE PARAMETERS OF FA Using EM

PCI
Principal Component
Analysis
c.ws e subspace
Gmm K means Facron
N
P
GIVEN PAIRS HIYA
HlwayMD4 Citymph HYBRIDS
CitymD4 economy
of some cars
anneys PCA
SUVs
Question GOOD MM
CITY m.sc
way 0
CENTER DATA h TLEx
xanax
mponental PrincipalVARIATION U
a
2Nd component ofVARIATION z
a
f L s
Oz
L
Now 11411 11 1 1 3g convention
U Is How good is more
Oz Is dilterere between Howardatg roughly
WECANWRITEX aU t
we many gyust 7qpqp this component
Luz

T0DA
PREPROCSE SING
HOW WE find these DIRECTIONS
AND SOME CAVEATS cos ofdims
44 Lds GpGp common
Cxolains none ran ON
about loads of dims A dimensionality Reduction MET40D
think
GIVENX x CRd
l CENTERthedata X t X ¦Ì Inwhen¦Ì n Ex
2 May NEED TO RESCALE Components e.g FEET PER gallow nmDG
WE will assume Lana
preprocessed
PCA.MS
¦Ì¦Ì
g
zAtOH
Etui
ter
q
WE Havea 71 11 1 ca Ui Uj
unitvectors 8ij Corrogonal
How do youfind closestpoet to the line L argmain Hx 24112
differentiate war
Argmain 11112 22 n 2x e x 24 Vix o x vi x

Generalize U U CRd AND Xt use vi Uj 8ij
INclass
MAXIMIZE Projected Subspace MINIMIZE Residual
n
WEIRD i 1141 1
U X T
MAX
WE NEED some frets to solve this
Angry ¦Ì x EIDrivin aafm.no lxl1i
i diTwin22xicui.xs
Hence
WE call DX 42 in theResidual
WE CAN find PCA by either
di viX
LET A be symmetric square then A U NUT in which
Recall
If x Ax Unutx
by convention eigenvalues
xUi where u on U
STANDARD Basis vector
a UUT I
Nii Xi AND X 7 An
ORTHONORMAL N is diagonal
UNE
CuiUj Pij diagonal N
nf
nie U IE Xidiei
Didi Ui
If X co Rhea X is AN eelgepgenvector man Ax Tix

BAektoPCA
MAX UilNHEl
2
II f TUE Projectiononto ht vi x’if
then
teepee an o e
n
MAX XTAx Max ie Efi Xi11112 1 2 112112 1
Hence WE SET Li 1 theprincipal eigenvalue
which
NOW
aiming it If 1 12
In IIutxcicxcisfu principal Eigenvector
ufh E.lk 5 u
U s
WHAT if WE WANT More dimensions
covariance alDam WE subtracts
MEAN
n
WE keep topL
Xli
WE KEEP these K scalars
112k
How do WE Goose K
ONE Approne4 AmountofExplainer VARIANCE
How do WE Represent DATA
Xiii
Oj
yI A map from Rd
E 30.9 AsidetalA AirEA zy

lorkingtability
RECAPIPCAT
Suppose 4k Akt WHAT HAPPENS REP Is unstable HERE
d
y
NB Only makes SENSE if Aj 30 Hence Covariance Is Important
Dimensioneletey REDUCTION technique e.g Visualization MAIN IDEA Is to project on a subspace niceKeong
of
fractureAnalysis