CS计算机代考程序代写 scheme matlab [Content_Types].xml

[Content_Types].xml

_rels/.rels

matlab/document.xml

matlab/output.xml

metadata/coreProperties.xml

metadata/mwcoreProperties.xml

metadata/mwcorePropertiesExtension.xml

metadata/mwcorePropertiesReleaseInfo.xml

Numerical Differentiation In this livescript, you will learn how To approximate derivatives using finite differences. To determine the error in a finite difference scheme. To be able to approximate a derivative, we should recall the definition of a derivative f'(x)=\lim_{\Delta\rightarrow0}{\frac{f(x+\Delta)-f(x)}{\Delta}} What this is saying is the derivative is constructed by looking at what happens when the secant is reduced to a single point. fplot(@(x)x.^2,[0,1])
text(0.81,0.63,sprintf(‘Exact’))
hold on
plot([0,1],[0,1].^2)
text(0.4,0.5,sprintf(‘h=1’))
plot([0,0.75],[0,0.75].^2)
text(0.25,0.2,sprintf(‘h=0.75’))
plot([0,0.5],[0,0.5].^2)
text(0.125,0.07,sprintf(‘h=0.5’))
xlabel(‘x’)
ylabel(‘df/dx’)
hold off Therefore, we can approximate the derivative by just supposing that h is very small, giving the forward difference formula f'(x)\approx\frac{f(x+\Delta)-f(x)}{\Delta} To formalise this idea, we can use the Taylor series expansion of f f(x)=f(x_{0})+ f'(x_{0})(x-x_{0})+\mathcal{O}(x-x_{0})^{2} Letting x=x_{0}+\Delta , we have f(x_{0}+\Delta)=f(x_{0})+ \Delta f'(x_{0})+\mathcal{O}(\Delta^{2}) Truncating the series at \mathcal{O}(\Delta^{2}) and rearranging for f'(x_{0}) gives the forward difference formula plus an additional term \mathcal{O}(\Delta) , which we call the truncation error. The following piece of code approximates the derivative of f(x)=x^{2} at x=0.5 . x = 0.5;
delta = 0.01;

f = @(x) x.^2;

f_dash = (f(x+delta)-f(x))./delta Generalising the code to evaluate the derivative over the interval [0,2] , we have x = linspace(0,2,3);
delta = x(2:end)-x(1:end-1);

f = @(x) x.^2;

f_dash = (f(x(2:end))-f(x(1:end-1)))./delta

plot(x,2.*x);
hold on
plot(x(1:end-1),f_dash)
legend(‘Exact’,’Approximate’)
xlabel(‘x’)
ylabel(‘df/dx’)
hold off (a) Modify the code to increase the number of points in the interval. See if the numerical derivative converges to the true derivative. Our derivation of the forward difference formula has shown us that the error in the scheme should decrease in the order of \mathcal{O}(\Delta)
. We can look at this by computing the error between the forward difference formula and the exact value of the derivative at x=1 . error = zeros(1,10);
f = @(x) x.^2;
x = 1;

for i = 1:10
delta = 2^-i;
f_dash = (f(x+delta)-f(x))./delta;
error(i) = abs(f_dash-2);
end

g = fitlm(log10(2.^-[1:10]),log10(error))
plot(g) However, it is not always obvious how to manipulate these series in order to obtain the finite difference scheme. I find that it’s much easier begin with the scheme and substitute in the Taylor series and hope that everything cancels out. To illustrate this, consider the central difference scheme f_{CD}'(x)=\frac{f(x+\Delta)-f(x-\Delta)}{2\Delta} The Taylor series expansions of f(x+h) and f(x-h) are f(x+\Delta) = f(x)+\Delta f'(x)+\Delta^{2}f”(x)+\mathcal{O}(\Delta^{3})\\
f(x-\Delta) = f(x)-\Delta f'(x)+\Delta^{2}f”(x)+\mathcal{O}(\Delta^{3}) Substituting these into the central difference scheme gives f_{CD}'(x)=\frac{[ f(x)+\Delta f'(x)+\Delta^{2}f”(x)+\mathcal{O}(\Delta^{3})]-[ f(x)-\Delta f'(x)+\Delta^{2}f”(x)+\mathcal{O}(\Delta^{3})]}{2\Delta} Upon simplifying this expression, we find f_{CD}'(x)=\frac{2\Delta f'(x)+\mathcal{O}(\Delta^{3})}{2\Delta}=f'(x)+\mathcal{O}(\Delta^{2}) which shows that the truncation error is \mathcal{O}(\Delta^{2}) . (b) Modify the livescript to use the central difference and backward difference schemes.

manual code ready 0.4 true false 0 8 8 false false 1 9 9 false false 2 10 10 false false 3 11 11 false false 4 12 12 false false 5 13 13 false false 6 14 14 false false 7 15 15 false false 8 16 16 false false 9 17 17 false false 10 18 18 false true 11 19 19 true false 12 29 29 false false 13 30 30 false false 14 32 32 false true 15 34 34 true false 16 37 37 false false 17 38 38 false false 18 40 40 false false 19 42 42 false false 20 44 44 false false 21 45 45 false false 22 46 46 false false 23 47 47 false false 24 48 48 false false 25 49 49 false true 26 50 50 true false 27 56 56 false false 28 57 57 false false 29 58 58 false false 30 60 64 false false 31 66 66 false true 32 67 67

2020-04-24T10:41:04Z 2020-09-20T02:57:27Z

application/vnd.mathworks.matlab.code MATLAB Code R2020b

9.9.0.1444674 805adf7a-29e4-4034-8e60-6b7c06cb2250

9.9.0.1467703
R2020b

Aug 26 2020
2314982500