CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml

_rels/.rels

matlab/document.xml

matlab/output.xml

metadata/coreProperties.xml

metadata/mwcoreProperties.xml

metadata/mwcorePropertiesExtension.xml

metadata/mwcorePropertiesReleaseInfo.xml

Least Squares Regression In this livescript, you will learn how To apply least squares regression Given a set of data points, we may approximate the relationship by assuming a functional relationship y_{i}=f(x_{i};\textbf{a}) , where \textbf{a} the parameters defining the problem. For a linear relationship y=a_{0}+a_{1}x a_{0} and a_{1} are the parameters. Define the error as e_{i}=|y_{i}-f(x_{i})| Then to determine f , we want to choose out a_{i} ‘s such that it minimises the total error. The total square error is therefore S=\sum^{N}_{i=1}{e_{i}^{2} Equation 1. Our goal is to find the a_{i} ‘s that minimise S . Thus, we compute the derivatives with respect to a_{i} and set it to zero. Thus, we obtain the set of equations \pmatrix{\frac{\partial S}{\partial a_{1}}\cr\frac{\partial S}{\partial a_{2}}\cr\vdots}
=
\pmatrix{\sum^{N}_{i=1}{2e_{i}\frac{\partial e_{i}}{\partial a_{1}}} \cr \sum^{N}_{i=1}{2e_{i}\frac{\partial e_{i}}{\partial a_{2}}} \cr \vdots}
=
\pmatrix{0 \cr 0 \cr \vdots} Equation 2. Eq. (2) defines the least squares problem. As an example, we consider the set of data x = [1.2712 1.6767 3.0656 3.7720 4.9970 6.0655 6.7446 7.7158 9.1419 9.8807];
y = [0.9835 1.5948 3.0609 4.0504 5.3752 5.7974 7.1778 7.8748 8.6854 9.7225]; A good idea before we conduct a regression analysis is to plot a scatter plot, so that we get an idea of what the functional relationship is figure(1)
plot(x,y,’.’,’MarkerSize’,15) The data is quite linear, so let’s assume a model of the form y=a_{0}+a_{1}x Part 1: (a) Show that the leasts squares problem is given by \pmatrix{\sum^{10}_{i=1}{x_{i}^{2}} & \sum^{10}_{i=1}{x_{i}} \cr \sum^{10}_{i=1}{x_{i}^{2}} & 10}
\pmatrix{a_{1} \cr a_{0}}
=
\pmatrix{\sum^{10}_{i=1}{x_{i}y_{i}} \cr \sum^{10}_{i=1}{y_{i}}} Equation 3. If we have a vector \texttt{x} , that contains all the x_{i} s, MATLAB has this great function \texttt{sum} , which as you may have guessed, determines the sum of all the elements of \texttt{x} . The following code uses \texttt{sum} to assemble the right and left-hand-side of Eq. (3). A = [sum(x.^2) sum(x);
sum(x) 10];
c = [sum(x.*y);
sum(y)]; Solving for the coefficients \{a\} and plotting a = A\c

xplot = linspace(1,10,100);
f = a(2) + a(1)*xplot;

figure(2)
plot(x,y,’.’,’MarkerSize’,15)
hold on
plot(xplot,f)
hold off (b) Run this code and see if it provides a good fit. (c) Use \texttt{fitlm} or the ‘Basic Fitting’ toolbox to check the answer. fitlm(x,y) You may have noticed that \texttt{fitlm} gives you quite a few outputs, including R^{2} , rms error, etc. To obtain a estimate of how good the regression is, a common measure is the R^{2} value. Define \bar{y}=\frac{1}{N}\sum^{N}_{i=1}{y_{i}} as the mean value of the measurements, which can be used as a crude estimate of the model. In MATLAB, we can find this using the \texttt{mean} command, whose input is a vector of the values. ybar = mean(y) Then the R^{2} value is defined as R^{2}=1-\frac{\sum^{N}_{i=1}{(y_{i}-f_{i}})^{2}}{\sum^{N}_{i=1}{(y_{i}-\bar{y}})^{2}} Equation 4. NOTES: The numerator may be interpreted as the residual sum of squares (i.e. how well f models the data) The denominator on the other hand is the total sum of squares (i.e. how well the mean models the data) R^{2} varies between -1\leq R^{2} \leq 1 . Applying this in MATLAB yi = y;
fi = a(2) + a(1)*x;

R2 = 1-(sum((yi-fi).^2))/(sum((yi-ybar).^2)) which does match the results we got from \texttt{fitlm} . There is a direct way of finding the R^{2} value in MATLAB. And it is based on the relation between R^{2} and a statistical measure called the Pearson correlation coefficient defined as r^{2}_{y,f}=\frac{(\text{Cov}(y,f))^{2}}{\text{Var}(y)\text{Var}(f)} Under some general assumptions, the R^{2} -value will be given by R^{2}=r^{2}_{y,f} Thus, we have cov(yi,fi).^2/(var(yi)*var(fi)) Alternatively, this can be determined using the function \texttt{corrcoef} , which takes the data \texttt{y} and \texttt{f} as inputs, and outputs a matrix of the cross correlations between \texttt{y} and \texttt{f} . corrcoef(yi,fi).^2

manual code ready 0.4 figure 504bf812-a320-4b3a-aaac-caeb4ca6cdda  560 420 2 3 2 3 4 matrix a 2×1 2 1 double 0.9908
0.0493
double double [[{“value”:”{\”value\”:\”0.9908\”}”},{“value”:”{\”value\”:\”0.0493\”}”}]] 9 figure 7586bf60-a6f3-4911-a8e3-ab3bf9988257 ×3/MN/riF7/Ib//2b9Nut/mrf/WvIr0Yk9GQ8aDP2RPHmVtapdXpIkmSpBeuQZviHe94B08++SRvfvOb+fjHP84jjzzCr/7qr/KWt7yFb/mWb+FnfuZnkF6MsyeOs7G8yNTc0iozs/NIkiTpxWnQpnjta1/LBz7wAZqm4Z/+2DhhGgAAIABJREFU03/KoUOHePe7383LX/5yPvKRj/D93//9SC/EZDRkPOjz2H13svvwUVqdLpIkSbowDdo0r3vd6zh27BgPPfQQDzzwAL/zO7/Dxz/+cfbt24f0QkxGQzaWF5lqr6wxMzuPJEmSLlyDNt2ePXu45ZZbePnLX470QkxGQ8aDPuu9BVqdLq1OF0mSJF08DZKuCJPRkI3lRabaK2vs3LsfSZIkXVwNkra88aDPem+BnXv30+p0kSRJ0qXRIGnLmoyGjAd9zhwbMLe0SqvTRZIkSZdOg6QtaTIasrG8yFR7ZY2Z2XkkSZJ0aTVI2lImoyHjQZ/13gK7Dx+l1ekiSZKkzdEgacuYjIas9xaYaq+sMTM7jyRJkjZPg6QtYTzos95boNXp0up0kSRJ0uZrkHRZTUZD1nsLTEZD5pZWufZAB0mSJF0eDZIumzPHBqz3Fti5dz/Xv+29zMzOI0mSpMunQdKmm4yGjAd9xoM+c0urtDpdJEmSdPk1SNpUk9GQjeVFptora8zMziNJkqStoUHSppiMhowHfdZ7C+w+fJRWp4skSZK2lgZJl9xkNGS9t8BUe2WNmdl5JEmStPU0SLqkxoM+670Frj3QodXpIkmSpK2rQdIlMRkNGQ/6nD1xnLmlVVqdLpIkSdraGiRddGdPHGdjeZGpuaVVZmbnkSRJ0tbXIOmimYyGjAd9HrvvTnYfPkqr00WSJElXjgZJF8VkNGRjeZGp9soaM7PzSJIk6crSIOmCTEZDxoM+670FWp0urU4XSZIkXZkaJL1ok9GQjeVFptora+zcux9JkiRduRokvWjrvQV27t1Pq9NFkiRJV74GSS/IZDRkPOhz8o7XMLe0SqvTRZIkSVeHBknP22Q0ZGN5kan2yhozs/NIkiTp6tEg6TlNRkPGgz7rvQV2Hz5Kq9NFkiRJV58GSc9qMhqy3ltgqr2yxszsPJIkSbo6NUh6RuNBn/XeAtce6NDqdJEkSdLVrUHS/2AyGvLYfXdy9sRx2itrtDpdJEmSdPVrkPTfOXNswHpvgZnZeeaWVpEkSdL20SDpvMloyHjQZzzoM7e0SqvTRZIkSdtLgyQmoyEby4tMtVfWmJmdR5IkSdtPg7SNTUZDxoM+670FWp0urU4XSZIkbV8N0jY1GQ1Z7y0w1V5ZY+fe/UiSJGl7a5C2ofGgz3pvgWsPdGh1ukiSJElTDdI2MhkNGQ/6nD1xnLmlVVqdLpIkSdJfaNCmmkwmfPazn+UTn/gEn/nMZ3jiiSfQ5jh74jgby4tMzS2tMjM7jyRJkvSNGrRpVldXec1rXsNP/MRPsLi4yB133MHNN9/ML/7iL6JLZzIaMh70eey+O9l9+CitThdJkiTp6TRoU3z605/m7rvvZs+ePXz0ox/lC1/4Ar/+67/Ovn37eM973sOv/MqvoItvMhqysbzIVHtljZnZeSRJkqRn0qBNcf/99/Ot3/qt/PIv/zKvfvWrueaaa9i7dy8f+MAH+M7v/E7+9b/+1+jimYyGjAd91nsLtDpdWp0ukiRJ0nNp0KZ4yUtewmtf+1quu+46vtG3fdu38bf/9t/mT/7kT9DFMRkN2VheZKq9ssbOvfuRJEmSno8GbYp/9+/+He9///v5Zk899RR/+Id/yLd/+7ejCzce9FnvLbBz735anS6SJEnSC9Ggy+pDH/oQX/nKVzh48CB68SajIeNBnzPHBrRX1mh1ukiSJEkvVIMum9/+7d/mPe95D9/zPd/D4cOHeSGSkIQkJCEJ29VkNGRjeZGp9soakiRJ20ESkpCEJCRBF65Bl8WnP/1p3vrWt/Jd3/Vd/PIv/zLXXnstL0RVUVVUFVVFVbHdTEZDxoM+670Fdh8+SqvTRZIkabuoKqqKqqKqqCp04Rq06d7//vdz+PBhXv7yl7O6usqePXvQC7feW2CqvbLGzOw8kiRJ0oVq0KZ617vexc///M/zt/7W32J1dZW/8lf+CnphxoM+J+94Ddce6NDqdJEkSZIulgZtmp/6qZ/i137t1/i7f/fv8m/+zb9h165d6PmbjIaMB33OnjjO3NIqrU4XSZIk6WJq0KZYWVnhoYce4u/9vb/HfffdxzXXXIOevzPHBmwsLzI1t7TKzOw8kiRJ0sXWoEvu9OnT3H///UydO3eOu+66i7vuuou77rqLu+66i7vuuou77rqLJ598Ev33JqMh40Gf8aDP7sNHaXW6SJIkSZdKgy653/3d3+XP/uzPmPqP//E/8uCDD/Lggw/y4IMP8uCDD/Lggw/y4IMP8tRTT6G/NBkN2VheZKq9ssbM7DySJEnSpdSgS+6Hf/iHqSqqiqqiqqgqqoqqoqqoKmZmZhBMRkPGgz7rvQXmllZpdbpIkiRJm6FB2kImoyEby4tMtVfWkCRJkjZTg7RFjAd91nsL7Ny7n1aniyRJkrTZGqTLbDIaMh70OXNswNzSKq1OF0mSJOlyaJAuo7MnjrOxvMhUe2WNmdl5JEmSpMulQboMJqMh40Gfx+67k7mlVVqdLpIkSdLl1iBtssloyHpvgan2yhqSJEnSVtEgbZLJaMh40Ge9t8D1b3svrU4XSZIkaStpkDbJxvIiX6wv8sf/5CHWdrwCSZIkaatpkC6x8aDPyTtew/++fj37v9rhwP2/z4H7f5/2vY/wwc99GUmSJGmraJAukcloyHjQ58yxAb/0g/8H77vuR/hGp06f49DHHuWDn/sykiRJ0lbQIF0Ck9GQjeVFpr7l3s9y7x98nWdy6GOPIkmSJG0FDdJFNBkNGQ/6rPcW2H34KK1Ol1OPn+O5nDp9DkmSJOlya5AuksloyHpvgan2yhozs/NMnTp9ludy6vFzSJIkSZdbg3QRjAd91nsLtFfWaHW6fKPbb76BZ7Nn1w5uvek6JEmSpMutQboAk9GQ8aDP2RPHmVta5ZncfvMNPJPbX30DkiRJ0lbQIL1IZ08cZ2N5kam5pVVmZud5Jg/82Cu457Y232jPrh3cc1ub3hvaSJIkSVtBg/QCTUZDxoM+j913J7sPH6XV6fJ89N7Q5uTdt3Dsra/i2Ftfxcm7b6H3hjaSJEnSVtEgvQCT0ZCN5UWm2itrzMzO80Ls2bWDW2+6jltvug5JkiRpq2mQnofJaMh40Ge9t8Dc0iqtThdJkiTpatMgPYfJaMjG8iJT7ZU1JEmSpKtVg/QsxoM+670Fdu7dT6vTRZIkSbqaNUhPYzIaMh70OXNswNzSKq1OF0mSJOlq1yB9k7MnjrOxvMhUe2WNmdl5JEmSpO2gQfr/TEZDxoM+j913J7sPH6XV6SJJkiRtJw3S/2MyGrLeW2CqvbLGzOw8kiRJ0nbToG1vPOiz3lug1enS6nSRJEmStqsGbVuT0ZD13gKT0ZD2yhrXHuggSZIkbWcN2pbOHBuw3ltgbmmV69/2XiRJkiRBg7aVyWjIeNBnPOgzt7SKJEmSpL/UoG1jMhqysbzIVHtljZnZeSRJkiT9pQZtC+NBn/XeArsPH6XV6SJJkiTpf9Sgq9pkNOTkHa9hqr2yxszsPJIkSZKeXoOuWuNBn/XeAtce6NDqdJEkSZL07Bp01ZmMhowHfc6eOM7c0iqtThdJkiRJz61BV5WzJ46zsbzI1NzSKjOz80iSJEl6fhp0VZiMhowHfR677052Hz5Kq9NFkiRJ0gvToMvmkUceYTgccqEmoyEby4u0Ol3aK2vMzM4jSZIk6YVr0GWxtrbGoUOHWFtb48WajIaMB33Wewu0Ol0kSZIkXZgGbbrf/d3f5fDhw1yIyWjIxvIiU+2VNXbu3Y8kSZKkC9OgTTOZTLj//vu5/fbb+drXvsaL9b/M/hnrvQV27t1Pq9Plxfjg577MoY89SvveRzhw/x+w9NBJJEmSpO2uQZvmbW97G7/wC7/A6173Ov7ZP/tnvFj/88smzC2t0up0eTGWHjrJoY89ygc/92VOnT7Hw196nHs+dZID9/8BkiRJ0nbWoE3z1//6X+eXfumXWFlZodVq8WL9eH07M7PzvBgPf+mr3POpkzydh7/0OEsPnUSSJEnarhq0aRYXF3nta1/LxZCEJCQhCUl4Pj77R4/zbE49fg5JkiRtfUlIQhKSkARduAZdkaqKqqKqqCqqiufj1OPneDYPf+lxJEmStPVVFVVFVVFVVBW6cA3aVva8bAfPZs/LdiJJkiRtVw3aVl73vS/j2bzl5uuRJEmStqsGbSu33nQdx976Kp7OPbe1uf3mG5AkSZK2qwZtO7fedB0n776Fe25rc+tNL+P2m2/ggR97Bb03tJEkSZK2swZtS3t27aD3hjbH3rqPB37sFdx+8w1IkiRJ212DJEmSJOm8BkmSJEnSeQ26LF7/+tdTVSwsLCBJkiRpa2iQJEmSJJ3XIEmSJEk6r0GSJEmSdF6DJEmSJOm8BkmSJEnSeQ2SJEmSpPMaJEmSJEnnNUiSJEmSzmuQJEmSJJ3XIEmSJEk6r0GSJEmSdF6DJEmSJOm8BkmSJEnSeQ2SJEmSpPMaJEmSJEnnNUiSJEmSzmuQJEmSJJ3XIEmSJEk6r0GSJEmSdF6DJEmSJOm8BkmSJEnSeQ2SJEmSpPMaJEmSJEnnNUiSJEmSzmuQJEmSJJ3XIEmSJEk6r0GSJEmSdF6DJEmSJOm8BkmSJEnSeQ2SJEmSpPMaJEmSJEnnNUiSJEmSzmuQJEmSJJ3XIEmSJEk6r0GSJEmSdF6DNtVTTz3FI488wic+8QkeeeQRnnrqKSRJkiRtDQ3aNP/5P/9nXv/613Po0CEWFxc5dOgQr3/963n00UfRxZMEPbMk6NklQc8sCXpmSdCzS4KeWRL0zJIgXUoN2hRnzpzhJ3/yJzl37hwf+MAH+MIXvsD73vc+zp07x0/8xE/w3/7bf0OSJEnS5dWgTfGRj3yE8XjMu9/9bl73utdxzTXXcNttt/EzP/MzjEYjPvzhDyNJkiTp8mrQpnjooYfYsWMHt912G9/o9a9/PTt27OA3f/M3kSRJknR5NeiSe+qpp/jiF7/I933f99E0Dd/sVa96FV/84hd56qmnkCRJknT5NOiSe+KJJ3jyySfZtWsXT+faa6/lySef5Gtf+xrPVxKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUmYSkISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlTSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJU0lIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCRhKglJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCRMJSEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkTCUhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEqSQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpIwlYQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhJ04Rp0yT3++ONMvfSlL+XpvOQlL2Hq1KlTPB9VRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVVRVVRVVQVVUVVUVVUFVVFVVFVVBVV9X+3B/+xURcGH8ff+7alVBgyKilItLX7UZRgPRGKtbNTGRgnids4Jc4ULyxVrJMVomAxLrLDuQw1TG0VgcYWiloYsvGrplqLzW1lErUzwY/1D1yjboKd0XmWtlef3PFHUeqePXkyf+w+rxeSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIQkJCEJSUhCEpKQhCQkIQlJSEISkpCEJCQhCUlIQhKSkIT9/wTYf9zo0aP5dwRBgJmZmZmZfXEC7D9u7NixJPX39zOSwcFBks4880zMzMzMzOyLE2D/cTk5OWRmZtLb28tIent7yczMJCcnBzMzMzMz++IE2OeiuLiYl156iaGhIU40NDTEiy++SHFxMWZmZmZm9sUKsM/FvHnz6O/vp7m5mRM1NzczODjIvHnzMDMzMzOzL1aAfS4WLlxIfn4+d999Nw0NDcRiMRoaGohGo+Tn57Nw4ULMzMzMzOyLFWCfi+zsbB577DGmTZvGmjVriEQirFmzhunTp9PY2Eh2djZmZmZmZvbFCrDPzeTJk2lqaqKjo4P6+nr2799PU1MTeXl5mJmZmZnZFy/APncTJ06ktLSUvLw8zMzMzMzsyyPAzMzMzMzMUgLMzMzMzMwsJcDMzMzMzMxSAszMzMzMzCwlwL5yYrEYPT092LCBgQHa29vZs2cPzz77LPF4HPukjz76iLa2Nvbt28fLL7+MfbYjR47Q2tpKb28vBolEgng8TjweJx6PE4/HicfjxONxjh07hg3r7u7m6aefprW1lSNHjmAQj8eJx+PE43Hi8TjxeJx4PE48HicejxOPx0kkEqS7RCJBe3s7e/bsob29nUQigX3SwMAA7e3t7Nu3j5dffhk7LhaL0dPTw2cZGhoiFouxZ88eYrEYQ0ND2L8WYF8pnZ2dRCIROjs7seO2bdtGSUkJlZWVVFdXs2TJEmbOnMmjjz6KHbdjxw4uvPBCbrzxRpYuXcrVV1/NFVdcweuvv46dbOnSpVRVVfHqq69icNdddxEKhQiFQoRCIUKhEKFQiFAoxO23347B0aNHiUQiXHnllfzsZz+jqqqK8vJy1q1bR7oLhUKEQiFCoRChUIhQKEQoFCIUChEKhQiFQnR2dpLOOjo6uPjii6msrKS6uprKykouvvhiOjo6sON27drFhRdeSGVlJUuXLuXqq69m/vz5vP7666Szzs5OIpEInZ2djOQvf/kLc+bMIRKJUF1dTSQSYc6cORw6dAj7bAH2lXHgwAGqqqqwYa2traxatYqCggK2bNlCV1cXv/vd7wiFQqxdu5ampibSXSwWY+XKlZx11lls27aNrq4u7r//fo4cOUIkEiEej2PDHnnkEQ4ePIgN6+npYdSoUYTDYcLhMOFwmHA4TDgcpqSkhHSXSCSIRCIcOHCAVatW0dXVxd69e5k5cya1tbVs376ddBYOhwmHw4TDYcLhMOFwmHA4zGWXXUbSlClTOOecc0hXPT09VFVVEQQBGzZs4JVXXqGxsZEgCFiyZAmHDx8m3bW3t7N8+XJycnKoq6ujq6uLhoYGPvroIyoqKjhy5Ajp6MCBA1RVVfFZ3n//fW644Qb6+vpYv349XV1dPPDAA/T19VFZWck///lPbGQB9qU3MDBAbW0t119/PceOHcOG1dbWkpmZyaZNm7jgggvIzs5m2rRprF+/nq9//ets2LCBdFdXV0dGRga1tbVMnz6d7OxsrrjiCpYuXco777zDs88+ix136NAh1q1bxze+8Q1s2AsvvMDs2bOJRqNEo1Gi0SjRaJRoNMo111xDutu6dSuvvfYaK1asoKKiguzsbAoLC7n//vvJzMxky5YtpLNoNEo0GiUajRKNRolGo0SjUT744ANGjRpFXV0d48ePJ13t3LmTvr4+VqxYwXe/+12ysrKYNWsWq1ator+/n+bmZtLdb37zGzIyMtiwYQOXXnop2dnZlJSUUF9fz3vvvcdDDz1EOhkYGKC2tpbrr7+eY8eO8Vk2b97Mu+++y5133kl5eTnZ2dnMnTuX1atX884779DY2IiNLMC+9G6++WbWrVtHeXk5d9xxBzYsIyODsrIyxo8fz4lOOeUUZsyYwZtvvkm6u/rqq7nhhhuYPHkyJ5o0aRJJPT09GBw7dozq6mrOP/98rrjiCuy4np4e+vv7+da3voWNbNeuXeTm5nLddddxogkTJrBp0yZWrFiBfVJdXR0HDhzg5z//OUVFRaSzN998k6QJEyZworPPPpuko0ePks6OHTtGd3c3JSUlFBUVcaIzzjiDGTNmsGPHDtLJzTffzLp16ygvL+eOO+7gs7S0tDB69Gjmzp3LiebMmcPo0aPZt28fNrIA+9KbOnUqGzdupK6ujtzcXGxYc3MzjzzyCJ82NDTEK6+8wpgxY0h38+fPZ+nSpXza/v37SZo5cyYGv/71rzl69Cj33nsvNuzQoUMkhUIhXnjhBTZv3sz27ds5dOgQBkNDQ3R1dTF79myCICCRSNDR0UEsFiORSFBSUkJJSQk27K233qK2tpapU6eyePFi0t1FF11E0p///GdO9PTTT5NUXFxMOuvt7SUpNzeXkZx66qn09fVx9OhR0sXUqVPZuHEjdXV15ObmMpKhoSG6u7s599xzCYKATzv//PPp7u5maGgIO1mAfelVV1dTVlaG/fsee+wxjh49Sjgcxoa9/vrr7Nmzh8WLF/PEE09QUVHBBRdcQLpra2tjy5Yt/OIXvyAvLw8b1tXVRdKaNWv4yU9+wi9/+Utqamq46qqrWLFiBYlEgnTW09NDIpFg3LhxbN26lRkzZrB48WIikQglJSXs2LED+6R169bR39/PrbfeisGVV17JVVddRW1tLUuXLmX79u3ceuutrF27lnnz5rFw4ULS2WmnnUbS3//+d0Zy+PBhkl577TXSRXV1NWVlZfwr8XicRCLBhAkTGMm4ceNIJBIcO3YMO1mA2X+Z559/nrVr1zJlyhSqqqqwYRs3bqS6upqOjg4mTZpEcXEx6a63t5dVq1Zx+eWXM3/+fOyTDh8+TNI555zDrl27eOWVV3j88cc599xzeeqpp7jnnntIZz09PSS1tbVxzz33UFlZycMPP8yaNWsYM2YMK1euZM+ePdhxb7zxBk899RQzZsygrKwMO27evHmcccYZ7Nu3j5qaGn7/+98zadIkfvzjHxMEAeksKyuL8847jwMHDhCLxThRe3s73d3dJCUSCWzYP/7xD5JGjRrFSDIyMkg6fPgwdrIAs/8ira2t3HTTTZx66qls2rSJcePGYcNWrFjBoUOH2Lt3L4WFhSxfvpza2lrS2e23305GRgZ33XUXdrKKigrWrl1LXV0d3/72t8nKyiIUClFfX09ubi5NTU28//77pKuPP/6YpL8y2mAkAAAIVUlEQVT97W/89re/5aabbuKSSy5hwYIFPP7442RmZrJ27VrsuKamJpIqKiqw47Zu3cqSJUvIz8+npaUFSbS0tDB16lQqKyvZvHkz6a6mpobMzExuuOEGotEoO3fuJBqNsmTJEs4991ySMjIysGGjR4/m3xEEAXayALP/Eo888ghVVVVMnDiRbdu2UVBQgH3S+PHjCYKAwsJCHn74YXJzc3nooYdIJBKko61bt/Lcc89x9913M378eOxks2bNYv78+Xza2LFjueiiixgcHOTgwYOkq+zsbJJOP/10ysvLOdHkyZO57LLLePPNNzl69CjpbmhoiD/84Q/k5uYyd+5cDIaGhrj33nuZNGkSDz74IAUFBSQVFBRQW1vLWWedxdq1a0kkEqSz4uJi6uvrKSwspLGxkdtuu41YLMb69es5++yzSZoyZQo2bOzYsST19/czksHBQZLOPPNM7GQBZv8FampquO+++zjvvPPYtm0bp59+OvavZWdnM3PmTAYHBzl48CDp6LnnniPppz/9KUVFRRQVFVFUVMSWLVtIikQiFBUV8d5772Eny87OJunjjz8mXYVCIZK+853vMJIxY8aQdPjwYdLdCy+8wLvvvsull15KEAQY/PWvf+WDDz5g5syZ5OTkcKKMjAzOP/98PvroIzo7O0l3s2bNYufOnXR1dfHSSy+xZ88eysrKeO+998jIyOCMM87AhuXk5JCZmUlvby8j6e3tJTMzk5ycHOxkAWZfcbfccgvbt2/n+9//Pg0NDUyYMAE7bmBggEsuuYQlS5Ywkr6+PpLy8vJIRxdddBHhcJhwOEw4HCYcDhMOh/nmN79J0sUXX0w4HGbUqFGko4GBAa677jpuueUWRtLb20tSYWEh6SorK4vTTz+dP/3pTwwNDfFpH374IUnFxcWkuz/+8Y8kfe9738OOGzduHEkDAwOMJJFIkJSTk0M6a2tro7W1laTs7GxycnJISiQStLe3c9555xEEAfZJxcXFvPTSSwwNDXGioaEhXnzxRYqLi7GRBZh9hdXV1dHS0sIPfvADHnzwQbKzs7FhWVlZjBkzhvb2dt544w1O1N3dzfPPP89ZZ51Ffn4+6aiiooJoNEo0GiUajRKNRolGo8yePZukSCRCNBrllFNOIR1lZWXx1ltv0drayuHDhzlRd3c3zz33HNOmTaOgoIB0dtVVV9HX10dzczMneuutt3jmmWeYMWMGWVlZpLtXX32VpNmzZ2PHTZgwgfz8fFpbW3n77bc50fvvv08sFiM3N5fi4mLS2eOPP84tt9zCkSNHONGGDRvo6+vjRz/6EXayefPm0d/fT3NzMydqbm5mcHCQefPmYSMLMPuK6u3tpba2lqS+vj6WLVvGsmXLWLZsGcuWLWPZsmUsW7aMRCJBOlu5ciWJRIKKigp27txJLBbjiSeeYNGiRXzta19j9erVmH2WmpoaEokEixYtYseOHcRiMbZt28aiRYsYNWoUv/rVr0h3kUiEKVOmsHr1ah588EE6OjrYtWsX1113HUm33347Bp2dnYwZM4axY8diw1atWsXg4CDXXnst27dvJxaLsWvXLq699lreeecdampqCIKAdLZo0SISiQSVlZW0tbXR0dHB2rVrue+++5g5cyYLFizATrZw4ULy8/O5++67aWhoIBaL0dDQQDQaJT8/n4ULF2IjCzD7ijpw4AD9/f0kPfPMM+zevZvdu3eze/dudu/eze7du9m9ezdDQ0Oks7KyMtavX08QBNx2221EIhHuvPNOJk6cyObNm5k1axZmn2XOnDk88MADBEHAypUriUQirFq1iokTJ9LY2EhRURHpbty4cTz55JOUl5fzwAMPsHjxYpYvX07So48+yvTp0zH48MMPmTZtGvZJ5eXlbNy4kYyMDGpqaohEIixfvpwPP/yQdevWceWVV5LuSktLueeee3j77be58cYbWbx4MZs2beKaa65h/fr12Miys7N57LHHmDZtGmvWrCESibBmzRqmT59OY2Mj2dnZ2MgC7Ctlzpw5SGLBggWku8svvxxJSEISkpCEJCQhCUlkZWWR7srLy2lra6OlpYX6+no6OjrYuXMnoVAIO9mdd96JJEpLSzGYO3cubW1t7N27l/r6evbv38/OnTuZPn06dtxpp51GbW0tBw8epL6+nr179/Lss89SWlqKHSeJxsZG7GRlZWW0trbS0tJCfX09LS0ttLW1cfnll2PH/fCHPyQWi/Hkk0/S0NDAyy+/zOrVqznllFNIZ3PmzEESCxYsYCSTJ0+mqamJjo4O6uvr2b9/P01NTeTl5WGfLcDM0kZBQQGlpaVMnDgRs/+rwsJCSktLycvLw0Y2duxYSktLKSwsxOz/qqCggNLSUgoKCrCTBUFAcXExJSUlZGVlYf++iRMnUlpaSl5eHva/CzAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0sJMDMzMzMzs5QAMzMzMzMzSwkwMzMzMzOzlAAzMzMzMzNLCTAzMzMzM7OUADMzMzMzM0v5H/VmthXCwu0UAAAAAElFTkSuQmCC 560 420 9 10 11 12 13 9 14 15 16 17 18 variableString ans Linear regression model:
y ~ 1 + x1

Estimated Coefficients:
Estimate SE tStat pValue
________ ________ _______ __________

(Intercept) 0.049323 0.21852 0.22571 0.82708
x1 0.99077 0.035635 27.803 3.0226e-09

Number of observations: 10, Error degrees of freedom: 8
Root Mean Squared Error: 0.32
R-squared: 0.99, Adjusted R-Squared: 0.988
F-statistic vs. constant model: 773, p-value = 3.02e-09 false false 1 1 19 variable R2 0.9898 1 1 24 matrix ans 2×2 2 2 double 1.0103 0.9898
0.9898 0.9898
double double [[{“value”:”{\”value\”:\”1.0103\”}”},{“value”:”{\”value\”:\”0.9898\”}”}]] 25 matrix ans 2×2 2 2 double 1.0000 0.9898
0.9898 1.0000
double double [[{“value”:”{\”value\”:\”1.0000\”}”},{“value”:”{\”value\”:\”0.9898\”}”}]] 26 true false x = [1.2712 1.6767 3.0656 3.7720 4.9970 6.0655 6.7446 7.7158 9.1419 9.8807]; 0 26 26 false true y = [0.9835 1.5948 3.0609 4.0504 5.3752 5.7974 7.1778 7.8748 8.6854 9.7225]; 1 27 27 true false figure(1) 2 30 30 0 false true plot(x,y,’.’,’MarkerSize’,15) 3 31 31 0 true false A = [sum(x.^2) sum(x);
sum(x) 10]; 4 43 44 false true c = [sum(x.*y);
sum(y)]; 5 45 46 true false a = A\c 6 49 49 1 false false xx = linspace(1,10,100); 7 51 51 false false f = a(2) + a(1)*xx; 8 52 52 false false figure(2) 9 54 54 2 false false plot(x,y,’.’,’MarkerSize’,15) 10 55 55 2 false false hold on 11 56 56 2 false false plot(xx,f) 12 57 57 2 false true hold off 13 58 58 2 true true fitlm(x,y) 14 63 63 3 true false yi = y; 15 80 80 false false fi = a(2) + a(1)*x; 16 81 81 false true R2 = 1-(sum((yi-fi).^2))/(sum((yi-ybar).^2)) 17 83 83 4 true false cov(yi,fi).^2/(var(yi)*var(fi)) 18 91 91 5 false true corrcoef(yi,fi).^2 19 93 93 6

2020-03-26T14:29:54Z 2020-04-09T07:04:51Z

application/vnd.mathworks.matlab.code MATLAB Code R2019b

9.7.0.1183724 b052da3d-afe4-4d54-8efa-c8680abb3de2

9.7.0.1296695
R2019b
Update 4
Jan 20 2020
3546228467