[Content_Types].xml
_rels/.rels
matlab/_rels/document.xml.rels
matlab/document.xml
matlab/output.xml
media/image1.png
metadata/coreProperties.xml
metadata/mwcoreProperties.xml
metadata/mwcorePropertiesExtension.xml
metadata/mwcorePropertiesReleaseInfo.xml
Netwon Interpolation In this livescript, you will learn how To use Netwon interpolation approximate functions For a set of datapoints (x_{0},f(x_{0})),\ldots,(x_{k},f(x_{k})) The Newton interpolating polynomial is defined as f_{n}(x)=\sum^{k}_{i=0}{b_{i}N_{i}(x)} where N_{i}}(x) is defined as the product N_{i}(x)=\prod^{i-1}_{\ell=0}{(x-x_{\ell})}=(x-x_{0})\cdots(x-x_{i-1}) For the rest of this livescript, we’ll consider approximating the function f(x)=|\text{sin}(x^{2})| at the sampling points x=\{-1,-1/3,1/3,1\} x = linspace(-1,1,4)
f = abs(sin(x.^2))
figure
plot(linspace(-1,1,100),abs(sin(linspace(-1,1,100).^2)));
hold on
plot(x,f,’.’,’MarkerSize’,15)
xlabel(‘x’)
ylabel(‘f(x)’)
hold off Newton basis polynomials So let’s write a piece of code that computes each N_{i}}(x) at some point x . The inputs of this function will therefore need to be The x coordinate. The order i . The interpolation points x_{\ell} . Since there are a known number of computations to be made, we can use a for loop. The idea behind using a loop here is that initially, we set N_{i,\text{Step 0}}=(x-x_{0}) Then going into the loop we multiply out initial condition by (x-x_{1}) , giving N_{i,\text{Step 1}}=(x-x_{0})(x-x_{1}) For the next iteration, we multiply by (x-x_{2}) , which gives N_{i,\text{Step 2}}=(x-x_{0})(x-x_{1})(x-x_{2}) Repeating this process until we reach (x-x_{i-1}) would therefore give us the desired result. Here we have a piece of code that does this for N_{2} at x=1 , which is sampled at the points \{1,2,3,4,5\} . x = 1;
i = 2;
xpoints = [1,2,3,4,5];
Ni = 1;
for l=1:i
Ni = Ni*(x-xpoints(l));
end
Ni (a) Convert this piece of code into a function. Divided Differences As for the divided differences b_{i} , our inputs will need to be The order i . The interpolation points x_{\ell} and y_{\ell} . For the coefficients b_{i} , the n^{\text{th}} divided difference is given by f[x_{n},\ldots,x_{0}]=\frac{f[x_{n},x_{n-1},\ldots,x_{1}]-f[x_{n-1},x_{n-2},\ldots,x_{0}]}{x_{n}-x_{0}} which we may represent graphically by What this is saying is that the 3^{\text{rd}} divided difference relies on two 2^{\text{nd}} divided difference, which itself relies on three 1^{\text{st}} divided differences. This recursive definition means that we need to construct our n^{\text{th}} divided difference from the 1^{\text{st}} divided difference upwards. (b) Determine the 1^{\text{st}} , 2^{\text{nd}} , 3^{\text{rd}} , and 4^{\text{th}} divided differences of Eq. (1). So let’s then look at constructing the 1^{\text{st}} divided difference using MATLAB. Since we know our end point, we’ll use a for loop, then a piece of code that determines the 1^{\text{st}} divided differences f[x_{j},x_{j+1}]=\frac{f(x_{j})-f(x_{j+1})}{x_{j}-x_{j+1}} is xpoints = linspace(-1,1,4);
ypoints = abs(sin(xpoints.^2));
f0 = ypoints;
f1 = zeros(1,length(f0)-1);
for j=1:length(f0)-1
f1(j) = (f0(j)-f0(j+1))/(xpoints(j)-xpoints(j+1));
end
f1 (c) Run the piece of code and check that the code produces the same result. (d) Modify the code to construct the second divided differences. So wrapping the piece of code in a second for loop to determine the (i+1)^{\text{st}} divided difference from the i^{\text{th}} divided difference, we have xpoints = linspace(-1,1,4);
ypoints = abs(sin(xpoints.^2));
f1 = zeros(length(xpoints),length(xpoints));
f1(1,:) = ypoints;
for i=1:length(xpoints)-1
for j=1:length(f1)-i
f1(i+1,j) = (f1(i,j)-f1(i,j+1))/(xpoints(j)-xpoints(j+i));
end
end
f1
disp(f1(end,1)) (e) Run the piece of code and see if it matches the your result in (a). (f) Convert this piece of code into a function. And so, the Newton interpolating polynomial is given by xpoints = linspace(-1,1,4);
ypoints = abs(sin(xpoints.^2));
x = linspace(-1,1,100);
f=0;
for i = 0:length(xpoints)-1
f = f+divdiff(xpoints(1:i+1),ypoints(1:i+1)).*newton_N(x,i,xpoints);
i
end
a = polyfit(xpoints,ypoints,length(xpoints)-1);
fit = polyval(a,x);
plot(xpoints,ypoints,’.’,’MarkerSize’,15)
hold on
plot(x,fit,’x-‘)
plot(x,f)
hold off
plot(x,abs(fit-f)) For convenience, the Newton basis polynomials are determined using the function \texttt{newton\_N} and the divided differences in the function \texttt{divdiff} .
manual code ready 0.4 matrix x 1×4 1 4 double -1.0000 -0.3333 0.3333 1.0000
double double [[{“value”:”{\”value\”:\”-1.0000\”}”},{“value”:”{\”value\”:\”-0.3333\”}”},{“value”:”{\”value\”:\”0.3333\”}”},{“value”:”{\”value\”:\”1.0000\”}”}]] 1 matrix f 1×4 1 4 double 0.8415 0.1109 0.1109 0.8415
double double [[{“value”:”{\”value\”:\”0.8415\”}”},{“value”:”{\”value\”:\”0.1109\”}”},{“value”:”{\”value\”:\”0.1109\”}”},{“value”:”{\”value\”:\”0.8415\”}”}]] 2 figure 6f949343-d5b6-4813-8b0a-2c51c881f06b  560 420 2 3 4 5 6 7 8 2 4 5 6 7 8 9 10 variable Ni 0 1 1 20 true false x = linspace(-1,1,4) 0 15 15 0 false false f = abs(sin(x.^2)) 1 16 16 1 false false figure 2 18 18 2 false false plot(linspace(-1,1,100),abs(sin(linspace(-1,1,100).^2))); 3 19 19 2 false false hold on 4 20 20 2 false false plot(x,f,’.’,’MarkerSize’,15) 5 21 21 2 false false xlabel(‘x’) 6 22 22 2 false false ylabel(‘f(x)’) 7 23 23 2 false true hold off 8 24 24 2 true false x = 1; 9 38 38 false false i = 2; 10 39 39 false false xpoints = [1,2,3,4,5]; 11 40 40 false false Ni = 1; 12 41 41 false false for l=1:i
Ni = Ni*(x-xpoints(l));
end 13 43 45 false true Ni 14 47 47 3 true false xpoints = linspace(-1,1,4); 15 65 65 false false ypoints = abs(sin(xpoints.^2)); 16 66 66 false false f0 = ypoints; 17 68 68 false false f1 = zeros(1,length(f0)-1); 18 69 69 false false for j=1:length(f0)-1
f1(j) = (f0(j)-f0(j+1))/(xpoints(j)-xpoints(j+1));
end 19 71 73 false true f1 20 75 75 true false xpoints = linspace(-1,1,4); 21 81 81 false false ypoints = abs(sin(xpoints.^2)); 22 82 82 false false f1 = zeros(length(xpoints),length(xpoints)); 23 84 84 false false f1(1,:) = ypoints; 24 85 85 false false for i=1:length(xpoints)-1
for j=1:length(f1)-i
f1(i+1,j) = (f1(i,j)-f1(i,j+1))/(xpoints(j)-xpoints(j+i));
end
end 25 87 93 false false f1 26 94 94 false true disp(f1(end,1)) 27 95 95 true false xpoints = linspace(-1,1,20); 28 100 100 false false ypoints = abs(sin(xpoints.^2)); 29 101 101 false false x = linspace(-1,1,100); 30 103 103 false false f=0; 31 105 105 false false for i = 0:length(xpoints)-1
f = f+divdiff(xpoints(1:i+1),ypoints(1:i+1)).*newton_N(x,i,xpoints);
i
end 32 107 111 false false a = polyfit(xpoints,ypoints,length(xpoints)-1); 33 113 113 false false fit = polyval(a,x); 34 114 114 false false plot(xpoints,ypoints,’.’,’MarkerSize’,15) 35 116 116 false false hold on 36 117 117 false false plot(x,fit,’x-‘) 37 118 118 false false plot(x,f) 38 119 119 false false hold off 39 120 120 false true plot(x,abs(fit-f)) 40 121 121
2020-03-31T14:12:03Z 2020-09-06T02:38:25Z
application/vnd.mathworks.matlab.code MATLAB Code R2020a
9.8.0.1298242 753d191b-d2c5-4eb1-9658-1dcf6a22c437
9.8.0.1417392
R2020a
Update 4
Jun 24 2020
1882048