CS计算机代考程序代写 ###################################################

###################################################
# Computer Lab 3 – F71SM
###################################################

## In the tasks below, fill in any missing code as
## required.
##
## Make sure you use the help menus in R (e.g.”?mean”
## will open up a help window for “mean()”).
##
## In some cases, the numerical answers you will find
## may be slightly different from those in the tutorial
## answers, due to rounding in intermediate steps.

###################################################
## Task 1
# Tutorial 4a, Question 1
# Confirm the answers

#(i)
1 – pbinom(11,20,0.6)
# Note that this can also be computed as
pbinom(11,20,0.6,lower.tail = FALSE)

#(ii)
pbinom(12,20,0.6)

###################################################
## Task 2
# Tutorial 4a, Question 4(a)
# Confirm the answers

p.more.three = 0.4^3; p.more.three
# Note that alternatively, we can use pgeom() in R
# But notice that R uses the version of geometric
# distn that corrsponds to “no. of failures before
# first success”, i.e. x = 0,1,2,…
# So “more than 3 attempts until passing” is the same
# as “more than 2 failures before passing”, i.e.
p.more.three.v2 = 1 – pgeom(2,0.6); p.more.three.v2

###################################################
## Task 3
# Tutorial 4a, Question 5
# Confirm the answers

#Using binom
pbinom(9,310,0.04)
1-pbinom(300,310,0.96)
#Using Poisson
ppois(9,(310*0.04))

###################################################
## Task 4
# Tutorial 4b, Questions 2(b),(c):
# Confirm the answers

# X~exp(0.01) tubes
# Y~exp(0.05) device

#(b)
p1 = pexp(40,0.05); p1
p2 = dbinom(2,3,p1) + dbinom(3,3,p1); p2

1-pbinom(1,3,p1)

#(c)

#Median

#P(X < mx) = 0.5 qexp(0.5,0.01) pexp(69.31472,0.01) qexp(0.5, 0.05) pexp(13.86294,0.05) ################################################### ## Task 5 # Tutorial 4b, Questions 3(a), (c), (d): # Confirm the answers #(a) p.ta = pnorm(75,65,4); p.ta #(c) p.tb = pnorm(75,64,6); p.tb #(d) #TA - Tb ~ norm(65-64,var=16+36=52) p.tatb = pnorm(0,1,sqrt(52)); p.tatb ################################################### ## Task 6 # Tutorial 4b, Question 4(c): # Confirm the answers p.a = ( pnorm(5.01,5.016,0.035) - pnorm(4.99,5.016,0.035) ) / 0.88; p.a p.b = ( pnorm(4.99,5.016,0.035) - pnorm(4.94,5.016,0.035) ) / 0.88; p.b p.c = ( pnorm(5.06,5.016,0.035) - pnorm(5.01,5.016,0.035) ) / 0.88; p.c ################################################### ## Task 7 ## Write a function in R that plots the graph of the ## cdf of a specified normal distribution and also returrns ## two specified quantiles of the distribution. ## The parameters of the distribution and the probabilities ## for the required quantiles should be specified by the user ## when the function is called. normal.fn <- function(mu=0,sigma=1,p1=0.025,p2){ x = seq(qnorm(0.0001,mu,sigma), qnorm(0.9999,mu,sigma), length.out=200) plot(x,pnorm(x,mu,sigma),type="l",ylab="F(x)") title(main="Plot of CDF") q = qnorm(p=c(p1,p2), mu,sigma) #q cat("\n", "Q(", p1, ")=", q[1], ", Q(", p2, ")=", q[2], "\n\n") } y = seq(qnorm(0.0001,0,1), qnorm(0.9999,0,1), length.out=200) y # e.g. normal.fn(0,1,0.025,0.975) abline(h=0.5) normal.fn(30,9,0.25,0.975) normal.fn(p2=0.975)