CS计算机代考程序代写 AI # game.py

# game.py
# ——-
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ( .edu) and Dan Klein ( .edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html

from util import *
import os
import time
import traceback

try:
import boinc
_BOINC_ENABLED = True
except:
_BOINC_ENABLED = False

#######################
# Parts worth reading #
#######################

class Agent:
“””
An agent must define a getAction method, but may also define the
following methods which will be called if they exist:

def registerInitialState(self, state): # inspects the starting state
“””
def __init__(self, index=0):
self.index = index

def getAction(self, state):
“””
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
must return an action from Directions.{North, South, East, West, Stop}
“””
raiseNotDefined()

class Directions:
NORTH = ‘North’
SOUTH = ‘South’
EAST = ‘East’
WEST = ‘West’
STOP = ‘Stop’

LEFT = {NORTH: WEST,
SOUTH: EAST,
EAST: NORTH,
WEST: SOUTH,
STOP: STOP}

RIGHT = dict([(y,x) for x, y in list(LEFT.items())])

REVERSE = {NORTH: SOUTH,
SOUTH: NORTH,
EAST: WEST,
WEST: EAST,
STOP: STOP}

class Configuration:
“””
A Configuration holds the (x,y) coordinate of a character, along with its
traveling direction.

The convention for positions, like a graph, is that (0,0) is the lower left
corner, x increases horizontally and y increases vertically. Therefore,
north is the direction of increasing y, or (0,1).
“””

def __init__(self, pos, direction):
self.pos = pos
self.direction = direction

def getPosition(self):
return (self.pos)

def getDirection(self):
return self.direction

def isInteger(self):
x,y = self.pos
return x == int(x) and y == int(y)

def __eq__(self, other):
if other == None: return False
return (self.pos == other.pos and self.direction == other.direction)

def __hash__(self):
x = hash(self.pos)
y = hash(self.direction)
return hash(x + 13 * y)

def __str__(self):
return “(x,y)=”+str(self.pos)+”, “+str(self.direction)

def generateSuccessor(self, vector):
“””
Generates a new configuration reached by translating the current
configuration by the action vector. This is a low-level call and does
not attempt to respect the legality of the movement.

Actions are movement vectors.
“””
x, y= self.pos
dx, dy = vector
direction = Actions.vectorToDirection(vector)
if direction == Directions.STOP:
direction = self.direction # There is no stop direction
return Configuration((x + dx, y+dy), direction)

class AgentState:
“””
AgentStates hold the state of an agent (configuration, speed, scared, etc).
“””

def __init__( self, startConfiguration, isPacman ):
self.start = startConfiguration
self.configuration = startConfiguration
self.isPacman = isPacman
self.scaredTimer = 0

def __str__( self ):
if self.isPacman:
return “Pacman: ” + str( self.configuration )
else:
return “Ghost: ” + str( self.configuration )

def __eq__( self, other ):
if other == None:
return False
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer

def __hash__(self):
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))

def copy( self ):
state = AgentState( self.start, self.isPacman )
state.configuration = self.configuration
state.scaredTimer = self.scaredTimer
return state

def getPosition(self):
if self.configuration == None: return None
return self.configuration.getPosition()

def getDirection(self):
return self.configuration.getDirection()

class Grid:
“””
A 2-dimensional array of objects backed by a list of lists. Data is accessed
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
y vertical and the origin (0,0) in the bottom left corner.

The __str__ method constructs an output that is oriented like a pacman board.
“””
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
if initialValue not in [False, True]: raise Exception(‘Grids can only contain booleans’)
self.CELLS_PER_INT = 30

self.width = width
self.height = height
self.data = [[initialValue for y in range(height)] for x in range(width)]
if bitRepresentation:
self._unpackBits(bitRepresentation)

def __getitem__(self, i):
return self.data[i]

def __setitem__(self, key, item):
self.data[key] = item

def __str__(self):
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
out.reverse()
return ‘\n’.join([”.join(x) for x in out])

def __eq__(self, other):
if other == None: return False
return self.data == other.data

def __hash__(self):
# return hash(str(self))
base = 1
h = 0
for l in self.data:
for i in l:
if i:
h += base
base *= 2
return hash(h)

def copy(self):
g = Grid(self.width, self.height)
g.data = [x[:] for x in self.data]
return g

def deepCopy(self):
return self.copy()

def shallowCopy(self):
g = Grid(self.width, self.height)
g.data = self.data
return g

def count(self, item =True ):
return sum([x.count(item) for x in self.data])

def asList(self, key = True):
list = []
for x in range(self.width):
for y in range(self.height):
if self[x][y] == key: list.append( (x,y) )
return list

def packBits(self):
“””
Returns an efficient int list representation

(width, height, bitPackedInts…)
“””
bits = [self.width, self.height]
currentInt = 0
for i in range(self.height * self.width):
bit = self.CELLS_PER_INT – (i % self.CELLS_PER_INT) – 1
x, y = self._cellIndexToPosition(i)
if self[x][y]:
currentInt += 2 ** bit
if (i + 1) % self.CELLS_PER_INT == 0:
bits.append(currentInt)
currentInt = 0
bits.append(currentInt)
return tuple(bits)

def _cellIndexToPosition(self, index):
x = index / self.height
y = index % self.height
return x, y

def _unpackBits(self, bits):
“””
Fills in data from a bit-level representation
“””
cell = 0
for packed in bits:
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
if cell == self.width * self.height: break
x, y = self._cellIndexToPosition(cell)
self[x][y] = bit
cell += 1

def _unpackInt(self, packed, size):
bools = []
if packed < 0: raise ValueError("must be a positive integer") for i in range(size): n = 2 ** (self.CELLS_PER_INT - i - 1) if packed >= n:
bools.append(True)
packed -= n
else:
bools.append(False)
return bools

def reconstituteGrid(bitRep):
if type(bitRep) is not type((1,2)):
return bitRep
width, height = bitRep[:2]
return Grid(width, height, bitRepresentation= bitRep[2:])

####################################
# Parts you shouldn’t have to read #
####################################

class Actions:
“””
A collection of static methods for manipulating move actions.
“””
# Directions
_directions = {Directions.NORTH: (0, 1),
Directions.SOUTH: (0, -1),
Directions.EAST: (1, 0),
Directions.WEST: (-1, 0),
Directions.STOP: (0, 0)}

_directionsAsList = list(_directions.items())

TOLERANCE = .001

@staticmethod
def reverseDirection(action):
if action == Directions.NORTH:
return Directions.SOUTH
if action == Directions.SOUTH:
return Directions.NORTH
if action == Directions.EAST:
return Directions.WEST
if action == Directions.WEST:
return Directions.EAST
return action

@staticmethod
def vectorToDirection(vector):
dx, dy = vector
if dy > 0:
return Directions.NORTH
if dy < 0: return Directions.SOUTH if dx < 0: return Directions.WEST if dx > 0:
return Directions.EAST
return Directions.STOP

@staticmethod
def directionToVector(direction, speed = 1.0):
dx, dy = Actions._directions[direction]
return (dx * speed, dy * speed)

@staticmethod
def getPossibleActions(config, walls):
possible = []
x, y = config.pos
x_int, y_int = int(x + 0.5), int(y + 0.5)

# In between grid points, all agents must continue straight
if (abs(x – x_int) + abs(y – y_int) > Actions.TOLERANCE):
return [config.getDirection()]

for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_y = y_int + dy
next_x = x_int + dx
if not walls[next_x][next_y]: possible.append(dir)

return possible

@staticmethod
def getLegalNeighbors(position, walls):
x,y = position
x_int, y_int = int(x + 0.5), int(y + 0.5)
neighbors = []
for dir, vec in Actions._directionsAsList:
dx, dy = vec
next_x = x_int + dx
if next_x < 0 or next_x == walls.width: continue next_y = y_int + dy if next_y < 0 or next_y == walls.height: continue if not walls[next_x][next_y]: neighbors.append((next_x, next_y)) return neighbors @staticmethod def getSuccessor(position, action): dx, dy = Actions.directionToVector(action) x, y = position return (x + dx, y + dy) class GameStateData: """ """ def __init__( self, prevState = None ): """ Generates a new data packet by copying information from its predecessor. """ if prevState != None: self.food = prevState.food.shallowCopy() self.capsules = prevState.capsules[:] self.agentStates = self.copyAgentStates( prevState.agentStates ) self.layout = prevState.layout self._eaten = prevState._eaten self.score = prevState.score self._foodEaten = None self._capsuleEaten = None self._agentMoved = None self._lose = False self._win = False self.scoreChange = 0 def deepCopy( self ): state = GameStateData( self ) state.food = self.food.deepCopy() state.layout = self.layout.deepCopy() state._agentMoved = self._agentMoved state._foodEaten = self._foodEaten state._capsuleEaten = self._capsuleEaten return state def copyAgentStates( self, agentStates ): copiedStates = [] for agentState in agentStates: copiedStates.append( agentState.copy() ) return copiedStates def __eq__( self, other ): """ Allows two states to be compared. """ if other == None: return False # TODO Check for type of other if not self.agentStates == other.agentStates: return False if not self.food == other.food: return False if not self.capsules == other.capsules: return False if not self.score == other.score: return False return True def __hash__( self ): """ Allows states to be keys of dictionaries. """ for i, state in enumerate( self.agentStates ): try: int(hash(state)) except TypeError as e: print(e) #hash(state) return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 ) def __str__( self ): width, height = self.layout.width, self.layout.height map = Grid(width, height) if type(self.food) == type((1,2)): self.food = reconstituteGrid(self.food) for x in range(width): for y in range(height): food, walls = self.food, self.layout.walls map[x][y] = self._foodWallStr(food[x][y], walls[x][y]) for agentState in self.agentStates: if agentState == None: continue if agentState.configuration == None: continue x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )] agent_dir = agentState.configuration.direction if agentState.isPacman: map[x][y] = self._pacStr( agent_dir ) else: map[x][y] = self._ghostStr( agent_dir ) for x, y in self.capsules: map[x][y] = 'o' return str(map) + ("\nScore: %d\n" % self.score) def _foodWallStr( self, hasFood, hasWall ): if hasFood: return '.' elif hasWall: return '%' else: return ' ' def _pacStr( self, dir ): if dir == Directions.NORTH: return 'v' if dir == Directions.SOUTH: return '^' if dir == Directions.WEST: return '>‘
return ‘<' def _ghostStr( self, dir ): return 'G' if dir == Directions.NORTH: return 'M' if dir == Directions.SOUTH: return 'W' if dir == Directions.WEST: return '3' return 'E' def initialize( self, layout, numGhostAgents ): """ Creates an initial game state from a layout array (see layout.py). """ self.food = layout.food.copy() self.capsules = layout.capsules[:] self.layout = layout self.score = 0 self.scoreChange = 0 self.agentStates = [] numGhosts = 0 for isPacman, pos in layout.agentPositions: if not isPacman: if numGhosts == numGhostAgents: continue # Max ghosts reached already else: numGhosts += 1 self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) ) self._eaten = [False for a in self.agentStates] class Game: """ The Game manages the control flow, soliciting actions from agents. """ def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ): self.agentCrashed = False self.agents = agents self.display = display self.rules = rules self.startingIndex = startingIndex self.gameOver = False self.muteAgents = muteAgents self.catchExceptions = catchExceptions self.moveHistory = [] self.totalAgentTimes = [0 for agent in agents] self.totalAgentTimeWarnings = [0 for agent in agents] self.agentTimeout = False def getProgress(self): if self.gameOver: return 1.0 else: return self.rules.getProgress(self) def _agentCrash( self, agentIndex, quiet=False): "Helper method for handling agent crashes" if not quiet: traceback.print_exc() self.gameOver = True self.agentCrashed = True self.rules.agentCrash(self, agentIndex) OLD_STDOUT = None OLD_STDERR = None def mute(self): if not self.muteAgents: return global OLD_STDOUT, OLD_STDERR import io OLD_STDOUT = sys.stdout OLD_STDERR = sys.stderr sys.stdout = io.StringIO() sys.stderr = io.StringIO() def unmute(self): if not self.muteAgents: return global OLD_STDOUT, OLD_STDERR sys.stdout.close() sys.stderr.close() # Revert stdout/stderr to originals sys.stdout = OLD_STDOUT sys.stderr = OLD_STDERR def run( self ): """ Main control loop for game play. """ self.display.initialize(self.state.data) self.numMoves = 0 ###self.display.initialize(self.state.makeObservation(1).data) # inform learning agents of the game start for i in range(len(self.agents)): agent = self.agents[i] if not agent: # this is a null agent, meaning it failed to load # the other team wins self._agentCrash(i, quiet=True) return if ("registerInitialState" in dir(agent)): self.mute() if self.catchExceptions: try: timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i))) try: start_time = time.time() timed_func(self.state.deepCopy()) time_taken = time.time() - start_time self.totalAgentTimes[i] += time_taken except TimeoutFunctionException: print("Agent %d ran out of time on startup!" % i) self.unmute() self.agentTimeout = True self._agentCrash(i, quiet=True) return except Exception as data: self.unmute() self._agentCrash(i, quiet=True) return else: agent.registerInitialState(self.state.deepCopy()) ## TODO: could this exceed the total time self.unmute() agentIndex = self.startingIndex numAgents = len( self.agents ) while not self.gameOver: # Fetch the next agent agent = self.agents[agentIndex] move_time = 0 skip_action = False # Generate an observation of the state if 'observationFunction' in dir( agent ): self.mute() if self.catchExceptions: try: timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex))) try: start_time = time.time() observation = timed_func(self.state.deepCopy()) except TimeoutFunctionException: skip_action = True move_time += time.time() - start_time self.unmute() except Exception as data: self.unmute() self._agentCrash(agentIndex, quiet=True) return else: observation = agent.observationFunction(self.state.deepCopy()) self.unmute() else: observation = self.state.deepCopy() # Solicit an action action = None self.mute() if self.catchExceptions: try: timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time)) try: start_time = time.time() if skip_action: raise TimeoutFunctionException() action = timed_func( observation ) except TimeoutFunctionException: print("Agent %d timed out on a single move!" % agentIndex) self.agentTimeout = True self.unmute() self._agentCrash(agentIndex, quiet=True) return move_time += time.time() - start_time if move_time > self.rules.getMoveWarningTime(agentIndex):
self.totalAgentTimeWarnings[agentIndex] += 1
print(“Agent %d took too long to make a move! This is warning %d” % (agentIndex, self.totalAgentTimeWarnings[agentIndex]))
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
print(“Agent %d exceeded the maximum number of warnings: %d” % (agentIndex, self.totalAgentTimeWarnings[agentIndex]))
self.agentTimeout = True
self.unmute()
self._agentCrash(agentIndex, quiet=True)

self.totalAgentTimes[agentIndex] += move_time
#print “Agent: %d, time: %f, total: %f” % (agentIndex, move_time, self.totalAgentTimes[agentIndex])
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
print(“Agent %d ran out of time! (time: %1.2f)” % (agentIndex, self.totalAgentTimes[agentIndex]))
self.agentTimeout = True
self.unmute()
self._agentCrash(agentIndex, quiet=True)
return
self.unmute()
except Exception as data:
self.unmute()
self._agentCrash(agentIndex)
return
else:
action = agent.getAction(observation)
self.unmute()

# Execute the action
self.moveHistory.append( (agentIndex, action) )
if self.catchExceptions:
try:
self.state = self.state.generateSuccessor( agentIndex, action )
except Exception as data:
self._agentCrash(agentIndex)
return
else:
self.state = self.state.generateSuccessor( agentIndex, action )

# Change the display
self.display.update( self.state.data )
###idx = agentIndex – agentIndex % 2 + 1
###self.display.update( self.state.makeObservation(idx).data )

# Allow for game specific conditions (winning, losing, etc.)
self.rules.process(self.state, self)
# Track progress
if agentIndex == numAgents + 1: self.numMoves += 1
# Next agent
agentIndex = ( agentIndex + 1 ) % numAgents

if _BOINC_ENABLED:
boinc.set_fraction_done(self.getProgress())

# inform a learning agent of the game result
for agent in self.agents:
if “final” in dir( agent ) :
try:
self.mute()
agent.final( self.state )
self.unmute()
except Exception as data:
if not self.catchExceptions: raise
self.unmute()
print(“Exception”,data)
self._agentCrash(agent.index)
return
self.display.finish()