CS代考 Q&A – Policies

Q&A – Policies
-Trenn 6CCS3AIN
c -Trenn, King’s College London
1

IPA
Q&A – Policies
c -Trenn, King’s College London
1
-Trenn 6CCS3AIN

Matrix Multi
Cz,, = §ok, i.bi, I ,,
CA0
̈ ̊ c1,1 c1,2 c1,3 ̨‹ ̈ ̊ a1,1 a1,2 a1,3 ̨‹ ̈ ̊ b1,1 b1,2 b1,3 ̨‹
̊ ̋ c2,1 c2,2 c2,3 ‹‚“ ̊ ̋ a2,1 a2,2 a2,3 ‹‚ ̈ ̊ ̋ b2,1 b2,2 b2,3 ‹‚ (1)
ccc aaa bbb
3,1 3,2 3,3 3,1
3,2 3,3 3,1
3,2 3,3
xk-iy-tha.it
c -Trenn, King’s College London
2

Your turn
1.3-12-1+51
̈ ̨ ̈ 1 2 3 ̨ 1+2 .3+2*22t8 ̋1 2 3‚ ̈ ̊ ̋3 2 1‹‚“g.10 9
4 5 6 1 1 1 91+5.31-6^1 4-2-15.32-1 2×3 3×3 252J
23
c -Trenn, King’s College London
3

Your turn
̈ 1 2 3 ̨ ̈ ̊ 1 2 3 ̨‹ ̈ 10 9 8 ̨ ̋4 5 6‚ ̈ ̊ ̋3 2 1‹‚“ ̋25 24 23‚
111
c -Trenn, King’s College London 4

Your turn
*¥÷÷÷i_.
4-0.
* 13:21!’ ‘ Let’s say our data is a triangle consisting of the points pit:)
✗ -49 z } ,
✗to:/1%1-51 ̈ ̨ ̈ ̨
p“ ,p“ ,p“
̈ ̨
=P:)
91!-911910 ́1
If we multiply it with ̋ ‚, what do we get? 1 0
c -Trenn, King’s College London
5

̨
̈
PI– Ap ,
pE=Apz
(F)
(F)
(f) BEAM
113
1 ̋1‚2 ̋2‚3 ̋1‚(F)+3

Your turn
Let’s say our data is a triangle consisting of the points
p1 “ ̈ ̋1 ̨‚, p2 “ ̈ ̋12 ̨‚, p3 “ ̈ ̋21 ̨‚ How can reflect the points across the x-axis?
c -Trenn, King’s College London 6

Av=dv
a- +5+0–11%1111,1=181–8/11 Consider the following matrix.
Your turn
*¥:) (4)
A “ ̈ ̋ 4 4 ̨‚ 10 ́2
Ab£=bAr=btr
= -1b£ v “ ̈ ̋1 ̨‚is an eigenvector. Whats the corresponding eigenvalue?
K- I 1%1114–1%1=814
1%41
8
c -Trenn, King’s College London
7
😐

Your turn
Consider the following matrix.
A “ ̈ ̋ 4 4 ̨‚ 10 ́2
Are v2 “ ̈ ̋2 ̨‚and v3 “ ̈ ̋3 ̨‚also eigenvector? How can reflect the points across the x-axis?
c -Trenn, King’s College London
8

Your turn
A’• 4. A 100100 36¥ jsa AH
μ36
Consider the following matrix.
A“ ̈ ̋44 ̨‚ 2hpm-I 10 ́2 1024
How do you calculate Ak fast for large k? d- 16=1-8.1-8
= 1-4.1-4 .
.
logtk) A ” -1-4
K=
c -Trenn, King’s College London
9

Your turn
Ak Consider the following matrix.
ro
✓n+i¥¥vny 10 ́2
A “ ̈ ̋ 4 4 ̨‚ How do you calculate Ak fast for large k?
c -Trenn, King’s College London
9

Your turn
Consider the following matrix.
A “ ̈ ̋ 4 4 ̨‚ 10 ́2
How do you calculate Ak fast for large k?
c -Trenn, King’s College London
9

p%=¥a
E÷÷i%
I
p! o¥¥¥
“”
E- 10%0

%¥ Hkd
¥;÷⇒¥÷
0
°