CS代写 PCA 12.3 (read lectures)

https://xkcd.com/1399/

Probabilistic PCA
Autoencoders

Copyright By PowCoder代写 加微信 powcoder

and Nonlinear Component Analysis
Autoencoders for image processing
Recommender systems
[PRML book]
Pre-read PCA – 12.1 This lecture:
12.2, 12.2.1, 12.4.2
Kernel week6
PCA 12.3 (read lectures)
Murphy’s PML book

Covariance matrix of (centered) data
variance projection
error formulation

Probabilistic PCA
x : D-dimensional vector
z : M-dimensional Gaussian D >= M
W: D-by-M matrix
latent variable

Likelihood a
nd posterior for x
also (2.113)-(2.117)
Woodbury / matrix inversion identity

Maximum likelihood for W, 𝝁, σ2

for probabilistic PCA

and Nonlinear Component Analysis
Probabilistic PCA
Autoencoders
Autoencoders for image processing
Recommender systems

Two-layer ass
neural nets

Linear autoencoder

Linear autoencoder

Easier to represent with
ore layers
“On the Expressive Power of Deep Architectures”, Bengio and Delalleau, 2011
Yao, A. (1985). Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science, pages 1–10.
H ̊astad, J. (1986). Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California.

Challenges
of “just ad
d more layers”

Cost function
of an autoencod

Glorot, Xavier, and . “Understanding the difficulty of training deep feedforward neural networks.” In AISTATS 2010 pp. 249-256.

and Nonlinear Component Analysis
Probabilistic PCA
Autoencoders
Autoencoders for image processing
Recommender systems

Xie, Junyuan, , and Enhong Chen. “Image
denoising and inpainting with deep neural
networks.”
Advances in neural information
processing systems
25 (2012): 341-349.

Xie, Junyuan, , and
Enhong Chen. “Image
denoising and inpainting with
deep neural networks.”
Advances in neural information
processing systems
25 (2012):

Resizing an
https://cimg.eu/greycstoration/demonstration.shtml

Image inpainting – undo
over image
Xie, Junyuan, , and Enhong Chen. “Image denoising and
inpainting with deep neural networks.”
Advances in neural
information processing systems
25 (2012): 341-349.

Image inpainting – free a bird
https://cimg.eu/greycstoration/demonstration.shtml

and nonlinea
Probabilistic PCA
Autoencoders
Applications in Image
processing
— denoising, upscaling, im
Recommender systems

Relational data and recom

Collaborative
Netflix prize dataset: 480K+
Newer public
MovieLens 1 M –
MovieLens 10 M
users, rating 17.8K movies, 100M ratings total
users, 3760 movies, 1M ratings
– ~70k users, 10K
~10M ratings

Matrix completion / matrix
prediction
Optimisation: alternating least squares, or stochastic
factorisation
gradient descent (SGD)

Autoencoders for
prediction
Loss function
recommendation
Sedhain et al, 2015]

https://cecs.anu.edu.au/events/event-series/anu-computing-leadership-seminar-series

Social recommendation
ocial Collaborative Filtering for Cold-start Recommendations. Sedhain,
uvash, Sanner, Scott, Braziunas, Darius, and Xie, Lexing, Recsys 2014
redit: for poster comic]

References

and Nonlinear Component Analysis
Probabilistic PCA
Autoencoders
Autoencoders for image processing
Recommender systems

程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com