CS代考 # Discrete Random Variable Example

# Discrete Random Variable Example
r <- c(-0.3, 0, 0.1, 0.2, 0.3) # Possible returns p <- c(0.05, 0.20, 0.5, 0.2, 0.05) # Associated Probabilities sum(p) # Check that sum is 1 Copyright By PowCoder代写 加微信 powcoder

# Expected Value:
sum(r * p)
mu <- sum(r * p) # save to mu # Variance sum((r - mu)^2 * p) # Variance sqrt(sum((r - mu)^2 * p)) # Standard Deviation # Working with X ~ Normal(0, 1) pnorm(0) # Probability(X <= 0) = ? pnorm(1) # Pr(X <= 1) = ? pnorm(1) - pnorm(-1) # Pr(-1 <= X <= 1) = ? qnorm(0.5) # 50% Quantile, i.e. Pr(X <= ?) = 0.5 qnorm(0.10) # 10% Quantile, i.e. Pr(X <= ?) = 0.1 # Working with X ~ Normal(0, 5) pnorm(0, mean = 2, sd = sqrt(5)) # Pr(X <= 0) = ? pnorm(0, 2, sqrt(5)) # Alternate form pnorm(-0.10, 0.02, 0.10) # Pr(R_A <= -0.10) pnorm(-0.10, 0.01, 0.05) # Pr(R_B <= -0.10) # Plotting Distributions #1. X ~ Uniform(-1, 1) x <- seq(-3, 3, length = 1000) y <- dunif(x, -1, 1) plot(x, y, type = 'l') # X ~ Normal(0, 1) y <- dnorm(x, 0, 1) plot(x, y, type = 'l') # R_A ~ Normal(0.02, 0.10); R_B ~ Normal(0.01, 0.05) x <- seq(-0.5, 0.5, length = 1000) y1 <- dnorm(x, 0.02, 0.10) #R_A y2 <- dnorm(x, 0.01, 0.05) #R_B plot(x, y1, type = 'l', ylim = c(0, max(y1, y2))) lines(x, y2) # R ~ Normal(0.05, 0.50^2) # Pr(R < -1) pnorm(-1, 0.05, 0.50) # R_A ~ Normal(0.02, 0.10); # Pr(R < -1) pnorm(-1, 0.02, 0.10) # r ~ N(0.05, 0.5^2) x <- seq(-2, 4, length = 1000) # lognormal is not symmetric plot(x, dnorm(x, 0.05, 0.5), type = 'l', ylim=c(0,1)) lines(x, dlnorm(x, 0.05, 0.5), col='blue', lty=2) legend("topright", legend = c("Normal", "LogNormal"), lty = c(1,2), col = c("black", "blue")) # X ~ Gamma distribution x <- seq(0, 10, by = 0.01) plot(x, dgamma(x, shape = 2, scale = 1), type = 'l', main = "Gamma Distribution") # X ~ Beta distribution x <- seq(0, 1, length = 1000) plot(x, dbeta(x, shape1 = 10, shape2 = 5), type = 'l', main = "Beta Distribution") # Discrete Random Variable Example r <- c(-0.3, 0, 0.1, 0.2, 0.3) # Possible returns p <- c(0.05, 0.20, 0.5, 0.2, 0.05) # Probabilities # Skewness & Kurtosis: mu <- sum(r * p) # Expected value / mean sigma <- sqrt( sum((r - mu)^2 * p) ) # SD skew <- sum((r - mu)^3 * p) / sigma^3 # Skewness kurt <- sum((r - mu)^4 * p) / sigma^4 # Kurtosis # Student's t-distribution x <- seq(-5, 5, length = 1000) plot(x, dnorm(x), type = 'l', lwd = 2) lines(x, dt(x, 1), lty = 2, col = 'blue') lines(x, dt(x, 5), lty = 3, col = 'darkgreen') lines(x, dt(x, 10), lty = 4, col = 'purple') lines(x, dt(x, 50), lty = 5, col = 'darkred') legend("topleft", legend = c("Normal", "t-1", "t-5", "t-10", "t-50"), lty = 1:5, col = c("black", "blue", "darkgreen", "purple", "red")) 程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com