程序代写 hills=read.table(“hills.txt”,header=TRUE)

hills=read.table(“hills.txt”,header=TRUE)
y=hills$time; climb=hills$climb; dist=hills$dist
n=nrow(hills)

Copyright By PowCoder代写 加微信 powcoder

#normal errors
model_string <- "model{ # Likelihood for(i in 1:n){ y[i]~dnorm(mu[i],tau) mu[i]=beta[1]+beta[2]*climb[i]+beta[3]*dist[i] # Prior for beta for(j in 1:3){ beta[j]~dnorm(mu0,tau0) tau0=1/sigma02 # Prior for the inverse variance tau~dgamma(a, b) # Compute the variance sigma2=1/tau mu0=0; sigma02=1000; a=0.1; b=0.1 data=list(y=y,climb=climb,dist=dist,n=n,mu0=mu0,sigma02=sigma02,a=a,b=b) model=jags.model(textConnection(model_string),n.chains=1,data=data) update(model,10000,progress.bar="none") resn=coda.samples(model,variable.names=c("beta","sigma2"),n.iter=50000,thin=1,progress.bar="none") summary(resn) autocorr.plot(resn) effectiveSize(resn[[1]][,"beta[1]"]) #t_5 errors model_string <- "model{ # Likelihood for(i in 1:n){ y[i]~dt(mu[i],tau,nu) mu[i]=beta[1]+beta[2]*climb[i]+beta[3]*dist[i] # Prior for beta for(j in 1:3){ beta[j]~dnorm(mu0,tau0) tau0=1/sigma02 # Prior for the inverse variance tau~dgamma(a, b) # Compute the variance sigma2=1/tau mu0=0; sigma02=1000; a=0.1; b=0.1; nu=5 data=list(y=y,climb=climb,dist=dist,n=n,mu0=mu0,sigma02=sigma02,a=a,b=b,nu=nu) model=jags.model(textConnection(model_string),n.chains=1,data=data) update(model,10000,progress.bar="none") rest=coda.samples(model,variable.names=c("beta","sigma2"),n.iter=50000,thin=1,progress.bar="none") summary(rest) autocorr.plot(rest) effectiveSize(rest[[1]][,"beta[2]"]) plot(density(rest[[1]][,"beta[1]"])) #t errors but prior on degrees of freedom model_string <- "model{ # Likelihood for(i in 1:n){ y[i]~dt(mu[i],tau,nu) mu[i]=beta[1]+beta[2]*climb[i]+beta[3]*dist[i] # Prior for beta for(j in 1:3){ beta[j]~dnorm(mu0,tau0) tau0=1/sigma02 # Prior for the inverse variance tau~dgamma(a, b) # Compute the variance sigma2=1/tau #Prior for nu nu~dgamma(c,d) mu0=0; sigma02=1000; a=0.1; b=0.1; c=0.1; d=0.1 data=list(y=y,climb=climb,dist=dist,n=n,mu0=mu0,sigma02=sigma02,a=a,b=b,c=c,d=d) model=jags.model(textConnection(model_string),n.chains=1,data=data) update(model,10000,progress.bar="none") restnu=coda.samples(model,variable.names=c("beta","sigma2","nu"),n.iter=50000,thin=1,progress.bar="none") summary(restnu) autocorr.plot(restnu) effectiveSize(restnu[[1]][,"beta[2]"]) 程序代写 CS代考 加微信: powcoder QQ: 1823890830 Email: powcoder@163.com