cuda

CS计算机代考程序代写 cuda Perceptrons¶

Perceptrons¶ Implementation of the classic Perceptron by Frank Rosenblatt for binary classification (here: 0/1 class labels) in PyTorch Imports¶ In [1]: import numpy as np import matplotlib.pyplot as plt import torch %matplotlib inline Preparing a toy dataset¶ In [2]: ########################## ### DATASET ########################## data = np.genfromtxt(‘perceptron_toydata.txt’, delimiter=’\t’) X, y = data[:, :2], data[:, 2] y = y.astype(np.int) […]

CS计算机代考程序代写 cuda Perceptrons¶ Read More »

CS计算机代考程序代写 python cuda LeNet-5 CIFAR10 Classifier¶

LeNet-5 CIFAR10 Classifier¶ References¶ • [1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998. Imports¶ In [1]: import os import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader

CS计算机代考程序代写 python cuda LeNet-5 CIFAR10 Classifier¶ Read More »

CS计算机代考程序代写 python cuda LeNet-5 MNIST Digits Classifier¶

LeNet-5 MNIST Digits Classifier¶ References¶ • [1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998. Imports¶ In [13]: import os import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import

CS计算机代考程序代写 python cuda LeNet-5 MNIST Digits Classifier¶ Read More »

CS计算机代考程序代写 cuda Solving the XOR Problem¶

Solving the XOR Problem¶ Toy Dataset¶ In [16]: import torch import torch.nn.functional as F import pandas as pd import time import matplotlib.pyplot as plt %matplotlib inline RANDOM_SEED = 123 DEVICE = (‘cuda:0’ if torch.cuda.is_available() else ‘cpu’) In [17]: df = pd.read_csv(‘xor.csv’) X = df[[‘x1’, ‘x2’]].values y = df[‘class label’].values In [18]: plt.scatter(X[y==0, 0], X[y==0, 1], marker=’o’) plt.scatter(X[y==1, 0],

CS计算机代考程序代写 cuda Solving the XOR Problem¶ Read More »

CS计算机代考程序代写 cuda Logistic Regression with L2 Regularization¶

Logistic Regression with L2 Regularization¶ Implementation of classic logistic regression for binary class labels. Imports¶ In [ ]: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F device = torch.device(‘cuda:0’ if torch.cuda.is_available() else ‘cpu’) LAMBDA = 2 Preparing a toy dataset¶ In [ ]: ########################## ### DATASET ########################## data = np.genfromtxt(‘data/toydata.txt’, delimiter=’\t’)

CS计算机代考程序代写 cuda Logistic Regression with L2 Regularization¶ Read More »

CS计算机代考程序代写 cuda AI GPU b’cuda_demo.tar.gz’

b’cuda_demo.tar.gz’ nvcc cuda_tutorial11.cu -o cuda_tutorial11.out #include #include /* This file can be downloaded from supercomputingblog.com. This is part of a series of tutorials that demonstrate how to use CUDA The tutorials will also demonstrate the speed of using CUDA */ // IMPORTANT NOTE: for this data size, your graphics card should have at least 512

CS计算机代考程序代写 cuda AI GPU b’cuda_demo.tar.gz’ Read More »

CS计算机代考程序代写 cuda cache algorithm GPU CUDA

CUDA CMPSC 450 What is CUDA • Compute Unified Device Architecture • An extension of the C programming language created by nVidia. • Enables GPUs to execute programs written in C in an integrated host (CPU) + device (GPU) app C program • Execute “kernels” as a SIMT program • A dedicated hardware solution CMPSC

CS计算机代考程序代写 cuda cache algorithm GPU CUDA Read More »

CS计算机代考程序代写 cuda distributed system algorithm concurrency cache finance x86 CMPSC 450 definitions

CMPSC 450 definitions CMPSC 450 What is a ‘parallel computer’? • A parallel computer consists of a number of tightly-coupled compute elements that cooperatively solve a problem. • Example of `tight coupling’: shared caches, shared main memory, shared led system, high-speed access to data, high-speed network connecting compute nodes. • Cooperatively solving implies manual or

CS计算机代考程序代写 cuda distributed system algorithm concurrency cache finance x86 CMPSC 450 definitions Read More »

CS计算机代考程序代写 cuda Matrix Multiplication using SUMMA and Canon

Matrix Multiplication using SUMMA and Canon CMPSC 450 Matrix Multiplication Exploded (CUDA?) *=*=*= *=*=*= *=*=*= CMPSC 450 SUMMA Step 1 *=*=*= *=*=*= *=*=*= Locally Owned A Locally Owned B Mult Input A (temp) Mult Input B (temp) Partial Locally Owned Answer (1/3) CMPSC 450 SUMMA Step 2 *=*=*= *=*=*= *=*=*= Locally Owned A Locally Owned

CS计算机代考程序代写 cuda Matrix Multiplication using SUMMA and Canon Read More »

CS计算机代考程序代写 cuda GPU b’cudaTut3PBSDemo.tar.gz’

b’cudaTut3PBSDemo.tar.gz’ #include #include #include /* This file can be downloaded from supercomputingblog.com. This is part of a series of tutorials that demonstrate how to use CUDA The tutorials will also demonstrate the speed of using CUDA */ // IMPORTANT NOTE: for this data size, your graphics card should have at least 256 megabytes of memory.

CS计算机代考程序代写 cuda GPU b’cudaTut3PBSDemo.tar.gz’ Read More »