finance

程序代写代做代考 AI Bayesian scheme chain matlab data mining database GMM algorithm finance ER Lecture 1: Introduction to Forecasting

Lecture 1: Introduction to Forecasting UCSD, January 9 2017 Allan Timmermann1 1UC San Diego Timmermann (UCSD) Forecasting Winter, 2017 1 / 64 1 Course objectives 2 Challenges facing forecasters 3 Forecast Objectives: the Loss Function 4 Common Assumptions on Loss 5 Specific Types of Loss Functions 6 Multivariate loss 7 Does the loss function matter? […]

程序代写代做代考 AI Bayesian scheme chain matlab data mining database GMM algorithm finance ER Lecture 1: Introduction to Forecasting Read More »

程序代写代做代考 deep learning scheme finance algorithm Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks

Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks This version: December 12, 2013 Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks Lawrence Takeuchi * ltakeuch@stanford.edu Yu-Ying (Albert) Lee yy.albert.lee@gmail.com Abstract We use an autoencoder composed of stacked restricted Boltzmann machines to extract features from the history of individual stock prices. Our

程序代写代做代考 deep learning scheme finance algorithm Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks Read More »

程序代写代做代考 assembly finance decision tree EPM945/EPM504

EPM945/EPM504 CITY UNIVERSITY London Optimization and Decision Making Linear Programming and Decision Making 2015 Time allowed: 2 hours Full marks may be obtained for correct answers to THREE of the FIVE questions. All necessary working must be shown. 1 Turn over . . . 1. Suppose that you have to choose an optimal portfolio from

程序代写代做代考 assembly finance decision tree EPM945/EPM504 Read More »

程序代写代做代考 Bioinformatics algorithm finance computational biology Microsoft Word – 82270737

Microsoft Word – 82270737 M. Lee et al. (Eds.): ICONIP 2013, Part II, LNCS 8227, pp. 737–744, 2013. © Springer-Verlag Berlin Heidelberg 2013 Feature Selection for Stock Market Analysis Yuqinq He, Kamaladdin Fataliyev, and Lipo Wang School of Electrical and Electronic Engineering Nanyang Technological University Singapore Abstract. The analysis of the financial market always draws

程序代写代做代考 Bioinformatics algorithm finance computational biology Microsoft Word – 82270737 Read More »

程序代写代做代考 scheme cache data mining crawler algorithm finance Microsoft Word – Project_Writeup.doc

Microsoft Word – Project_Writeup.doc 1 Machine Learning Techniques for Stock Prediction Vatsal H. Shah 2 1. Introduction 1.1 An informal Introduction to Stock Market Prediction Recently, a lot of interesting work has been done in the area of applying Machine Learning Algorithms for analyzing price patterns and predicting stock prices and index changes. Most stock

程序代写代做代考 scheme cache data mining crawler algorithm finance Microsoft Word – Project_Writeup.doc Read More »

程序代写代做代考 data mining cache scheme finance crawler algorithm Microsoft Word – Project_Writeup.doc

Microsoft Word – Project_Writeup.doc 1 Machine Learning Techniques for Stock Prediction Vatsal H. Shah 2 1. Introduction 1.1 An informal Introduction to Stock Market Prediction Recently, a lot of interesting work has been done in the area of applying Machine Learning Algorithms for analyzing price patterns and predicting stock prices and index changes. Most stock

程序代写代做代考 data mining cache scheme finance crawler algorithm Microsoft Word – Project_Writeup.doc Read More »

程序代写代做代考 algorithm finance scheme 1

1 Assessing Opinion Mining in Stock Trading Sathish Nagappan (srn), Govinda Dasu (gdasu) I. Introduction We hypothesize that money should go where the public wants and needs it to go, and the firm that is the best and fastest at determining these human demands will yield the highest percentage growth. To test this hypothesis we set up two predictors: (1) the first predictor considered only numerical data such as historical prices, EBITDA, and PE Ratio, and (2) the second considered human news and opinions on companies, their products, and their services. The first task was to derive an accurate first predictor. As our baseline we used SVR with RBF kernel, which led to SGD with various iterations to better approximate the RBF kernel. After implementing this by grouping all stocks from major indices, we realized that we should consider stocks individually and take into account time series. This resulted in the ARIMAX model with AIC backwards search selection (predictor 1). Next, we moved to predictor 2. We added NLP features for each company such as indicators of specific n­grams that give insight into the positivity of the stream of relevant text about a company’s products and services. Ultimately this led to ARIMAX with these NLP features and combination feature selection (predictor 2). This allowed us to compare the relative successes of the model with and without NLP features. II. Data and Cross Validation The numerical data was obtained from Bloomberg and the headline data from Factset. We retrieved a list of all stocks from the S&P 500, Russell 1000, and NASDAQ 100. Each training example was indexed by company ticker and date and had 28 features such as PE Ratio, EBITDA, price, and volatility. The target for each training example was the one day percent change in closing price. We retrieved 2M training examples from 2009 to present. Our method of evaluation comes from the concept of score defined as follows: core   S = 1 −   ∑ m i = 1 (y(i)   y(i) ) / true −   predicted  2 ∑ m i = 1 (y(i)   y(i) )true −   true_mean  2   Perfect prediction yields a score of 1. Less optimal predictions will be lower, even arbitrarily large negative numbers. We used a variant of hold­out cross validation; we tested our models on the last 6 months and trained using the remainder of the data. Due to computational complexity, for our initial algorithm, we trained on the first 1.5 years of 2012­2013 and tested on the last 6 months, totaling 486k training examples. For our later algorithms, we trained on the first 3.5 years of 2009­2013 and tested on the last 6 months. Randomly selecting a subsample to cross validate would yield an unrealistic and unfair advantage since we would be using future

程序代写代做代考 algorithm finance scheme 1 Read More »

程序代写代做代考 python finance FRE6831

FRE6831 COMPUTATIONAL FINANCE LABORATORY (PYTHON) Edward D. Weinberger, Ph.D., F.R.M Adjunct Professor Dept. of Finance and Risk Engineering edw2026@nyu.edu Office Hours by appointment PROJECT: IMPLEMENTING A LIBOR YIELD CURVE OBJECT The class project is to write a Python program that infers the short end of the USD LIBOR yield curve from market observations, via the

程序代写代做代考 python finance FRE6831 Read More »

程序代写代做代考 scheme DHCP finance IST 6480 – Network Planning – 2020 Fall

IST 6480 – Network Planning – 2020 Fall Final Project The object of the exercise will be to develop a comprehensive network plan for an organization. For example, you are to develop the user ids, groups, equipment information and firewall configurations. You will need to create a map, and detailed equipment configurations to document your

程序代写代做代考 scheme DHCP finance IST 6480 – Network Planning – 2020 Fall Read More »