matlab代写代考

CS计算机代考程序代写 matlab AI Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 10 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi L10.1: Spline interpolation 2 “Book” (Chap. 5, pg. 87) Spline Interpolation Splines are made up of piecewise polynomials connecting only two data points. This is different to Newton or Lagrange polynomials […]

CS计算机代考程序代写 matlab AI Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 matlab clear all;

clear all; close all; Delta_t=1.0e-4; %Delta_t=1.0e-5; %Delta_t=1.0e-6; %Delta_t=1.0e-7; t=0:Delta_t:10.0; % preallocating memory & set elements to zero %x=zeros(1,numel(t)); x(1)=0.0; tic % start timer for n=1:length(t)-1 x(n+1)=x(n)+Delta_t*(1-x(n)); end temp=toc; %end timer fprintf(1,’It takes %e seconds to execute the Matlab program\n’,temp);

CS计算机代考程序代写 matlab clear all; Read More »

CS计算机代考程序代写 matlab clear all

clear all Npoints=30; alpha = 1; %BC1 y(-1)=alpha beta = 0; %BC2 y'(1)=beta %xpoints=linspace(-1,1,Npoints)’; [xpoints,w,P]=lglnodes(Npoints); xpoints=-xpoints; y = @(x) -(1-16*exp(4)+4*exp(8)-exp(4+4*x)+4*exp(8)*x)./(16*exp(4)); yexact = y(xpoints); n=length(xpoints)-1; %order of polynomial D=DerivMatrix(xpoints,n); D2 = D*D; r = exp(4*xpoints); Amatrix=[D2(2:end-1,2:end);D(end,2:end)]; Cvector=[r(2:end-1);beta]-alpha*[D2(2:end-1,1);D(end,1)]; sol = Amatrix\Cvector; yapprox = [alpha;sol]; hold off plot(xpoints,yapprox,’bo’) hold on plot(xpoints,yexact,’k-‘) xlabel(‘x’);ylabel(‘y’) function D=DerivMatrix(x,n) D=zeros(n+1,n+1); for i=1:n+1 num(i)=1.0;

CS计算机代考程序代写 matlab clear all Read More »

CS计算机代考程序代写 matlab algorithm Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 06 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi Lecture Recap We have established that the following type of systems are easy to solve. Diagonal a11 0 0 . .0. . 0 Lower triangular Upper triangular aaaa…a 0 [] 00aa…a

CS计算机代考程序代写 matlab algorithm Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 scheme matlab AI Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 12 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi Announcement Assignment 2
 -Due 8/5/2021 -Root finding, Sys. Linear Eqn., Inerpolation, Integration 2 L11.4: Romberg Integration: Richardson’s extrapolation 3 Richardson’s Extrapolation The exact value of an integral can be decomposed into

CS计算机代考程序代写 scheme matlab AI Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 matlab clear all;

clear all; close all; Delta_t=0.05; t=0:Delta_t:50; % %Preallocating Memory % x=zeros(length(t),2); x(1,1)=1.0;x(1,2)=0.0; for n=1:length(t)-1 x(n+1,:)=Findxnplus1(Delta_t,x(n,:)); end %Check with Matlab solution [tmat,xmat] = ode23(@Example22p4,[0 50],[1 0]); hold off plot(t,x(:,1),’k-.’,tmat,xmat(:,1),’k-‘); hold on plot(t,x(:,2),’b-.’,tmat,xmat(:,2),’b-‘); legend(‘x_0(t) Crank-Nicolson’,’x_0(t) MATLAB ode23()’,’x_1(t) Crank-Nicolson’,’x_1(t) MATLAB ode23()’); xlabel(‘t’,’Fontsize’,18);ylabel(‘x_i(t)’,’Fontsize’,18); function p=Findxnplus1(Delta_t,xn) eps=1.0; %Just making sure you go through the loop at least once p=xn; %Guess

CS计算机代考程序代写 matlab clear all; Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Numerical Integration In this livescript, you will learn how to Apply the Trapezoidal rule and Simpsons’s rule to approximate integrals. Apply Gaussian quadrature to approximate integrals Numerical Integration The main idea behind numerical integration (or quadrature) is to approximate a complicated function at some set of points

CS计算机代考程序代写 matlab [Content_Types].xml Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Runge-Kutta Methods In this livescript, you will learn how To solve initial value problems using Runge-Kutta methods. Previously, we saw that with the explicit Euler method, we saw that the value of x_{n+1} is given by x_{n+1}=x_{n}+\Delta tf(t_{n},x_{n}) However, the only problem with it was that it

CS计算机代考程序代写 matlab [Content_Types].xml Read More »

CS计算机代考程序代写 scheme matlab algorithm Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 07 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi L7.1: Convergence of iterative methods Example L07.1: In example L06.2, we showed that it was possible to find the solution to the following 4×4 system of linear algebraic equations below using

CS计算机代考程序代写 scheme matlab algorithm Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 matlab clear all

clear all tic xmatlab1 = fsolve(@NonlinearExample,[1;1;1]); toc options = optimoptions(@fsolve,’Display’,’iter’,’SpecifyObjectiveGradient’,true); tic [xmatlab2,F,exitflag,output,JAC] = fsolve(@NonlinearExampleWithJacobian,[1;1;1],options); toc x=[1;1;1] [f,J]=NonlinearExampleWithJacobian(x); while max(abs(f)) > 1.0e-8 [L,U]=LUDecomposition(J); R=LowerTriangularSolver(L,-f); diff=UpperTriangularSolver(U,R); x=diff+x [f,J]=NonlinearExampleWithJacobian(x); end function [f,J] = NonlinearExampleWithJacobian(x) f(1) = 3*x(1)+cos(x(2)*x(3))-1/2; f(2) = x(1)^2-81*(x(2)+0.1)^2 +sin(x(3)) + 1.06; f(3)=exp(-x(1)*x(2)) +20*x(3)+(10*pi-3)/3; J(1,1)=3;J(1,2)=-x(3)*sin(x(2)*x(3));J(1,3)=-x(2)*sin(x(2)*x(3)); J(2,1)=2*x(1);J(2,2)=-16.2-162*x(2);J(2,3)=cos(x(3)); J(3,1)=-x(2)*exp(-x(1)*x(2));J(3,2)=-x(1)*exp(-x(1)*x(2));J(3,3)=20; end function f = NonlinearExample(x) f(1) = 3*x(1)+cos(x(2)*x(3))-1/2; f(2) =

CS计算机代考程序代写 matlab clear all Read More »