matlab代写代考

CS计算机代考程序代写 matlab clear all

clear all Npoints=50; alpha = 5; %BC1 y(x=-1)=5 beta = 3; %BC2 y(x=1)=3 %xpoints=linspace(-1,1,Npoints)’; [xpoints,w,P]=lglnodes(Npoints); xpoints=-xpoints; tpoints=(xpoints+3)/2; y = @(t) t+4./t.^2; yexact = y(tpoints); n=length(xpoints)-1; %order of polynomial D=DerivMatrix(xpoints,n); D2 = D*D; A=D2+diag(2./(xpoints+3))*D-diag(2./(xpoints+3).^2); Amatrix=A(2:end-1,2:end-1); Cvector=-alpha*A(2:end-1,1)-beta*A(2:end-1,end); sol = Amatrix\Cvector; yapprox = [alpha;sol;beta]; hold off plot(tpoints,yapprox,’bo’) hold on plot(tpoints,yexact,’k-‘) xlabel(‘t’);ylabel(‘y’); function D=DerivMatrix(x,n) D=zeros(n+1,n+1); for i=1:n+1 num(i)=1.0; for […]

CS计算机代考程序代写 matlab clear all Read More »

CS计算机代考程序代写 matlab cuda flex DHCP Agda [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Question 8 Solution Nodes x_quad = [-1 0 1]; x_8th = linspace(-1,1,9); x_gll = [-1,-0.8998,-0.6772,-0.3631,0,0.3631,0.6772,0.8998,1]; Witch of Agnesi f_quad = 1./(1+25.*x_quad.^2); f_8th = 1./(1+25.*x_8th.^2); f_gll = 1./(1+25.*x_gll.^2); 2nd order Lagrange polynomial x1 = linspace(-1,1,100); y1 = 0; for l = 1:length(f_quad) y1 = y1+f_quad(l)*lagrange_L(l,x_quad,x1); end plot(x1,y1) hold

CS计算机代考程序代写 matlab cuda flex DHCP Agda [Content_Types].xml Read More »

CS计算机代考程序代写 matlab DHCP JDBC Agda [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Spline Interpolation In this livescript, you will learn how To use low order spline interpolation to approximate functions. To generalise to higher order splines. We’ll consider approximating the Logistic curve f(x)=\frac{1}{1+e^{-10x}} with 7 points between -5\leq x \leq 5 . The function values at the nodes is

CS计算机代考程序代写 matlab DHCP JDBC Agda [Content_Types].xml Read More »

CS计算机代考程序代写 matlab clear all

clear all close all eps=1.0; p=ones(2,1); %Guess value for p while eps>1.0e-14 [gfunc,jacobian]=ExampleFunctionWithJacobian(p); eps=max(abs(gfunc)); temp=jacobian\(-gfunc); %this is more efficient than inv(jacobian)*(-gfunc) p=temp+p; end options = optimoptions(@fsolve,’Display’,’iter’,’SpecifyObjectiveGradient’,true); [pmatlab,F,exitflag,output,JAC] = fsolve(@ExampleFunctionWithJacobian,[1;1],options); %Check to see if same as solution given by MATLAB fsolve() abs(p-pmatlab) function [gfunc,jac]=ExampleFunctionWithJacobian(p) gfunc=[2*p(1)-2*p(2)-exp(-p(1)); -p(1)+2*p(2)-exp(-p(2))]; jac=[2+exp(-p(1)) -2;-1 2+exp(-p(2))]; end

CS计算机代考程序代写 matlab clear all Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml MATLAB Root Finding Methods In this livescript, you will learn how to Plot graph of a function Use the inbuilt MATLAB \texttt{roots()} function to find roots of a polynomial function Use the inbuilt MATLAB \texttt{fzero()} function to find roots of a general function Suppose you would like

CS计算机代考程序代写 matlab [Content_Types].xml Read More »

CS计算机代考程序代写 scheme matlab ENGR20005

ENGR20005 Numerical Methods in Engineering Workshop 12 Part A: MATLAB Livescripts 12.1 The livescript ENGR20005 Workshop12p1.mlx runs through the solution of systems of differential equations in MATLAB. (a) Read through the livescript and make sure you understand what each line of code does. (b) Modify the livescript to solve the initial value problem dy1 =−expy2

CS计算机代考程序代写 scheme matlab ENGR20005 Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml The Spectral Collocation Method for Solving Boundary Value Problems In this livescript, you will learn how To solve boundary value problems using the spectral collocation method. Consider the linear two point boundary value problem \frac{d^{2}y}{dx^{2}}+2\frac{dy}{dx}-6y=0 with the boundary conditions y(-1)=1 an y'(1)=1 . y0 = 1; yN

CS计算机代考程序代写 matlab [Content_Types].xml Read More »

CS计算机代考程序代写 matlab clear all

clear all xpoints=linspace(-1,1,5); %[xpoints,w]=lgwt(25,-1,1); %[xpoints,w,P]=lglnodes(2); ypoints=1./(1+25*xpoints.^2); n=length(xpoints)-1; %order of polynomial xint=-1:0.01:1; yint=LagrangePolynomial(xpoints,ypoints,n,xint); yreal=1./(1+25*xint.^2); hold off plot(xpoints,ypoints,’ko’,’MarkerSize’,20,’MarkerFaceColor’,’r’) hold on plot(xint,yint,’b-‘,’Linewidth’,4) plot(xint,yreal,’k-‘,’Linewidth’,4) xlabel(‘x’) ylabel(‘y’) function yint=LagrangePolynomial(x,y,n,xint) yint=zeros(size(xint)); for i=1:n+1 Lix=1.0; for j=1:n+1 if j ~= i Lix=Lix.*(xint-x(j))/(x(i)-x(j)); end end yint=yint+y(i).*Lix; end end function [x,w]=lgwt(N,a,b) % lgwt.m % % This script is for computing definite integrals using Legendre-Gauss

CS计算机代考程序代写 matlab clear all Read More »