matlab代写代考

CS计算机代考程序代写 matlab %MATLAB script to illustrate Richardson’s extrapolation for derivative

%MATLAB script to illustrate Richardson’s extrapolation for derivative %% MyFunc=@(x) x.^2.*cos(x) MyDeriv=@(x)x.*(2.*cos(x)-x.*sin(x)) %% Dexact=MyDeriv(2) %% xi=2; Delta1=0.2; xim1=xi-Delta1; xip1=xi+Delta1; D1=(MyFunc(xip1)-MyFunc(xim1))/(2*Delta1) %% Delta2=0.1; xim1=xi-Delta2; xip1=xi+Delta2; D2=(MyFunc(xip1)-MyFunc(xim1))/(2*Delta2) %% D=D2*(1+1/((Delta1/Delta2)^2-1))-D1*(1/((Delta1/Delta2)^2-1))

CS计算机代考程序代写 matlab %MATLAB script to illustrate Richardson’s extrapolation for derivative Read More »

CS计算机代考程序代写 matlab Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 08 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi L8.1: Least-Squares Regression 2 Lecture Notes (Chap. 4, pg. 67) Assume that you have a car undergoing a constant acceleration. If all the sensors are perfect and you can read the

CS计算机代考程序代写 matlab Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 scheme matlab Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 20 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi L20.1: Ordinary Differential Equations: Nonlinear problems 2 Example L20.1: Use explicit Euler’s method to solve the ODE dx =x(x−x2) 5 dt −5 in the domain 0 ≤ t ≤ 2 ×

CS计算机代考程序代写 scheme matlab Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 scheme matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Open Methods: The Newton-Raphson Method In this livescript, you will learn how The Newton-Raphson method works To write a piece of code that implements the method Again, we’ll be considering the problem f(x)=ax^{2}+(1-a)x=0 Equation 1. The Newton-Raphson method works by estimating the function using its first order

CS计算机代考程序代写 scheme matlab [Content_Types].xml Read More »

CS计算机代考程序代写 matlab Lecture 2. Dynamics and Safe Control

Lecture 2. Dynamics and Safe Control Changliu Liu Assistant Professor Robotics Institute Carnegie Mellon University How to Model a Car? 2 All models are wrong, but some are useful. Getting Started: How to Model a Car for Control? How Will You Drive in These Situations? 4 High speed Parking Your control action depends on the

CS计算机代考程序代写 matlab Lecture 2. Dynamics and Safe Control Read More »

CS计算机代考程序代写 matlab chain Numerical Methods in Engineering (ENGR20005)

Numerical Methods in Engineering (ENGR20005) Lecture 18 Dr. Leon Chan lzhchan@unimelb.edu.au Department of Mechanical Engineering The University of Melbourne Slides prepared by Prof.Andrew Ooi L18.1: Higher Order Taylor Method 2 Higher Order Taylor Method Recall from the last lecture, that we can compute the solution to = f(t,x) using the explicit Euler formula xn+1 =

CS计算机代考程序代写 matlab chain Numerical Methods in Engineering (ENGR20005) Read More »

CS计算机代考程序代写 scheme matlab assembly algorithm [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml The Finite Difference Method for Solving Boundary Value Problems In this livescript, you will learn how To solve boundary value problems using finite difference methods. We’ll continue with our example on steady one dimensional heat diffusion \frac{d^{2}T}{dx^{2}}=0 with the boundary conditions T(0)=0 and T(1)=1 . The process

CS计算机代考程序代写 scheme matlab assembly algorithm [Content_Types].xml Read More »

CS计算机代考程序代写 matlab Agda [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml If you want to visualise functions of two variables, say f(x,y)=xe^{(x-y^2)^2+y^2} then it is more complicated. To visualise f(x,y) , you will need to follow the steps below. Define a two-dimensional mesh/grid. Evalute f(x,y) on the mesh/grid. Plot the function using \texttt{surf()} or \texttt{contour()} functions in MATLAB.

CS计算机代考程序代写 matlab Agda [Content_Types].xml Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml Iterative Methods: Convergence In this livescript, you will learn how To determine the convergence of an iterative method. The SOR method can be used to improve the convergence/speed up the computation of the Gauss-Seidel method. Consider an iterative method \{x\}=g(\{x\}) and define the error at step k

CS计算机代考程序代写 matlab [Content_Types].xml Read More »

CS计算机代考程序代写 matlab [Content_Types].xml

[Content_Types].xml _rels/.rels documentation/doc.xml matlab/document.xml matlab/output.xml metadata/coreProperties.xml metadata/mwcoreProperties.xml metadata/mwcorePropertiesExtension.xml metadata/mwcorePropertiesReleaseInfo.xml bisection_example bisection_example is a live function function bisection_example%(xlg,xug) prompt = {‘Enter lower bound:’,’Enter upper bound:’}; dlgtitle = ‘Input’; dims = [1 35]; definput = {”,”}; answer = inputdlg(prompt,dlgtitle,dims,definput); func = @(x) x.^3-x;%str2func(answer{3}); %promptl = ‘Enter a lower bound: ‘; xl = [str2double(answer{1})]; %promptu = ‘Enter an

CS计算机代考程序代写 matlab [Content_Types].xml Read More »