matlab代写代考

程序代写代做代考 matlab EGB345 Control and Dynamic Systems JJF/15

EGB345 Control and Dynamic Systems JJF/15 COMPUTER LAB 2 – MODELLING AND CHECKING YOUR ANSWERS You will need to demonstrate some of skills developed in this computer lab in your pre-lab submission. Task 1: You are told that a vehicle with suspension has transfer function: where R(s)corresponds to the road surface and X s (s)is […]

程序代写代做代考 matlab EGB345 Control and Dynamic Systems JJF/15 Read More »

程序代写代做代考 python Java c++ algorithm matlab Microsoft Word – COMP3308-assignment2-2018-final.docx

Microsoft Word – COMP3308-assignment2-2018-final.docx COMP3308 – Introduction to Artificial Intelligence    Semester 1, 2018    Page 1 of 7  Assignment 2: Classification Deadlines Submission: 5pm, Friday 18th May, 2018 (week 10)  This assignment is worth 20% of your final mark.  Task description In  this  assignment  you will  implement  the  K‐Nearest Neighbour  and Naïve Bayes  algorithms  and  evaluate them on a real dataset using the stratified cross validation method. You will also evaluate the  performance of other classifiers on  the  same dataset using Weka. Finally, you will  investigate  the  effect of feature selection, in particular the Correlation‐based Feature Selection method (CFS) from  Weka.  Late submissions policy No late submissions are allowed.  Programming languages Your implementation can be written in Python, Java, C, C++ or MATLAB. The assignment will be tested  on the University machines, so your code must be compatible with the language version installed on  those machines. You are not allowed to use any of the built‐in classification libraries for the purposes  of this assignment.  Submission and pair work Your assignment can be completed individually or in pairs. See the submission details section for more  information about how to submit.  This  assignment  will  be  submitted 

程序代写代做代考 python Java c++ algorithm matlab Microsoft Word – COMP3308-assignment2-2018-final.docx Read More »

程序代写代做代考 case study database matlab PTRL5014 Take-home Assignment

PTRL5014 Take-home Assignment General Information This assignment consists of two parts, each requiring a separate submission. Part 1 submission is a single word file, while in part 2, you must combine all matlab files and the word file (containing the figures) into a zip file and upload that. The assignment is marked out of 100

程序代写代做代考 case study database matlab PTRL5014 Take-home Assignment Read More »

程序代写代做代考 case study database algorithm matlab Data Representation for High Dimensional Data

Data Representation for High Dimensional Data Lecture 6: Dimensionality Reduction 1 CMSC5741 Big Data Tech. & Apps. Prof. Michael R. Lyu Computer Science & Engineering Dept. The Chinese University of Hong Kong A Compression Example 2 Outline Motivation SVD CUR Application of SVD and CUR PCA Extension to robust PCA 3 Dimensionality Reduction Motivation Assumption:

程序代写代做代考 case study database algorithm matlab Data Representation for High Dimensional Data Read More »

程序代写代做代考 python algorithm matlab EECS 391 Introduction to Artificial Intelligence

EECS 391 Introduction to Artificial Intelligence Fall 2018, Written Assignment 5 (“W5”) Due: Tue Nov 27. Submit a single pdf document along with your code for the whole assignment to Canvas before class. You may scan a handwritten page for the written portions, but make sure you submit a single pdf file. Total Points: 100

程序代写代做代考 python algorithm matlab EECS 391 Introduction to Artificial Intelligence Read More »

程序代写代做代考 python Java c++ algorithm matlab COMP3308 – Introduction to Artificial Intelligence Semester 1, 2018

COMP3308 – Introduction to Artificial Intelligence Semester 1, 2018 Page 1 of 4 Assignment 1: Search Methods Deadline Submission: 5pm, Friday 20 April, 2018 (week 6). This assignment is worth 10% of your final mark. It is an individual assignment; no group work. Late submissions policy No late submissions are allowed. Programming languages Your implementation

程序代写代做代考 python Java c++ algorithm matlab COMP3308 – Introduction to Artificial Intelligence Semester 1, 2018 Read More »

程序代写代做代考 scheme data science algorithm finance Bayesian flex python matlab Excel decision tree DNA B tree Springer Texts in Statistics

Springer Texts in Statistics An Introduction to Statistical Learning Gareth James Daniela Witten Trevor Hastie Robert Tibshirani with Applications in R Springer Texts in Statistics Series Editors: G. Casella S. Fienberg I. Olkin For further volumes: http://www.springer.com/series/417 http://www.springer.com/series/417 Gareth James • Daniela Witten • Trevor Hastie Robert Tibshirani An Introduction to Statistical Learning with Applications

程序代写代做代考 scheme data science algorithm finance Bayesian flex python matlab Excel decision tree DNA B tree Springer Texts in Statistics Read More »

程序代写代做代考 Bioinformatics flex Bayesian matlab bayesGauss.dvi

bayesGauss.dvi Conjugate Bayesian analysis of the Gaussian distribution Kevin P. Murphy∗ murphyk@cs.ubc.ca Last updated October 3, 2007 1 Introduction The Gaussian or normal distribution is one of the most widely used in statistics. Estimating its parameters using Bayesian inference and conjugate priors is also widely used. The use of conjugate priors allows all the results

程序代写代做代考 Bioinformatics flex Bayesian matlab bayesGauss.dvi Read More »

程序代写代做代考 python Java matlab chain COMP9334 Project, Session 1, 2018:

COMP9334 Project, Session 1, 2018: Server setup in data centres Version 1.1 Due Date: 11:00pm Sunday 20 May 2018. This version: 22 April 2018 Updates to the project, including any corrections and clarifications, will be posted on the subject website. Make sure that you check the course website regularly for updates. Change log Note: New

程序代写代做代考 python Java matlab chain COMP9334 Project, Session 1, 2018: Read More »

程序代写代做代考 Excel data structure python matlab QBUS6850: Tutorial 2 – Linear Algebra, Data Handling

QBUS6850: Tutorial 2 – Linear Algebra, Data Handling and Plotting Objectives  To handle data using Numpy, Pandas libraries;  To plot data using matplotlib library; 1. Libraries For this tutorial you will need to use external libraries. Libraries are groups of useful functions for a particular domain. The import statement is used to import

程序代写代做代考 Excel data structure python matlab QBUS6850: Tutorial 2 – Linear Algebra, Data Handling Read More »